Product Complexity, Quality of Institutions and the Protrade Effect of Immigrants

Anthony Briant1, Pierre-Philippe Combes2 and Miren Lafourcade3

Paris School of Economics, Paris, France, 2Aix-Marseille University (School of economics), CNRS and EHESS, Marseille, France and 3University Paris-South (ADIS) and Paris School of Economics, Paris, France

1. INTRODUCTION

Despite the widespread availability of modern communication technologies, information costs still play a crucial role in shaping world trade patterns. As surveyed by Anderson and Van Wincoop (2004), these costs, equivalent to an ad valorem tax of 6 per cent, largely account for the puzzling persistence of distance and border impediments to trade.

According to Rauch (2001), social and business transnational networks are likely to alleviate some of these information failures. Cross-border networks are prone to substitute for organised markets in matching international buyers and sellers, and this is especially true of differentiated products. In this respect, co-ethnic networks are of more particular interest, as illustrated for instance by the model of Casella and Rauch (2003). Immigrants’ ties with their home country may promote trade for at least three reasons. First, immigrants have a good knowledge of the customs, language, laws as well as business practices in both the host and home countries. Accordingly, their presence helps in bridging the information gap between sellers and buyers on both sides, hence promoting bilateral trade opportunities. Second, immigrant networks may provide contract enforcement through sanctions and exclusions, which substitutes for weak institutional rules and reduces trade costs. In addition to the two previous channels, immigrants bring their taste for homeland products, which should make their trade-creating impact even more salient on imports.

In this paper, we take seriously the econometric challenge to assess the trade-creating effect of migrations. Contrary to the plethoric literature on this topic, we use very geographically detailed and sectoral data to assess this relationship. We also implement sophisticated econometric techniques to tackle the notorious issue of endogeneity inherent in this relationship. Our results corroborate the almost uniform finding that immigrant populations encourage trade between host regions and home countries. However, our elasticity is around two times smaller than the most conservative estimates found in the literature (i.e. those of Herander and
Saavedra, 2005, for US states exports). We investigate the protrade effect of foreign-born French residents on the exports and imports of French départements with around 100 countries in the world. The novelty consists in crossing the effect of immigration with both the quality of institutions in the home country and the complexity of traded goods.

The trade-promoting effect of immigration is now well documented (see Wagner et al., 2002; for an extensive review). Gould (1994), Head and Ries (1998) and Girma and Yu (2002) find a significant trade-creating impact of immigrants settled in the United States, Canada and the United Kingdom, respectively. Rauch and Trindade (2002) exhibit a diaspora network rationale ruling this protrade phenomenon by showing that South Asian country pairs with a higher proportion of Chinese immigrants trade more with each other.

However, there are many reasons to suspect that, at the country level, the correlation between trade and immigration might arise from omitted common determinants (such as colonial ties, language or cultural proximity) or reverse causality if immigrants prefer to settle in countries that have good trade relationships with their home country.

Accordingly, a few recent attempts investigate the link between the spatial patterns of trade and immigrants’ settlements within countries. Wagner et al. (2002) are the first to test a causal relationship between trade and immigration at the scale of Canadian provinces. The inclusion of country-fixed effects allows to control for the common determinants of trade and immigration at the national level. At the same time, cross-sectional variability in trade and immigration at the regional level provides sufficient information to identify the protrade effect of immigrants. The authors confirm the positive and significant elasticity of trade with respect to immigration, at the regional level.

Further evidence is provided for the US states exports. Herander and Saavedra (2005) disentangle the impact of both the in-state and out-state stocks of immigrants. The outstanding impact of in-state immigrants pinpoints the key role of local social interactions as a major source of technological externalities. Building on the same previous data set, Dunlevy (2006) further shows that the protrade effect of immigrants increases with the degree of corruption and with language similarity in the partner country. Finally, Bandyopadhyay et al. (2008) explore the temporal scope of the data and regress the 1990–2000 time variation in trade on the related time variation in immigrants’ settlements. This approach bears the advantage of controlling for pair-specific unobserved characteristics. The protrade effect of immigrants is found to exhibit a large heterogeneity driven by a few countries only. In a related strand of literature, Combes et al. (2005) for France and Millimet and Osang (2007) for the United States show that within-country migrations affect positively the volume of inter-regional trade flows.

Our paper extends this literature in three directions. First, the relationship between trade and immigration is studied at a lower geographical scale than any previous North American study. French départements are almost 30 times tinier than American states and more than 100 times smaller than Canadian provinces. A spurious correlation between trade and immigration is less likely to occur at this very fine geographical scale, which mitigates the likelihood that immigrants would capture other unobserved variables possibly correlated with trade. Typically, the French country hosts a large share of North African immigrants due to its past colonial history. History could also explain why France registers very large trade flows with North African countries. However, at the country level, it is difficult to assess that North African immigrants are the source of such trade. By way of contrast, at the very fine geographical scale of départements, finding a strong trade-creating impact of North African immigrants would be hardly rationalised without a true causal effect, especially given that informational
spillovers decrease strongly with distance. Actually, we do find that immigration exerts a significant positive impact on trade: doubling the number of immigrants settled in a département boosts its exports to the home country by 7 per cent and its imports by 4 per cent.

Second, we address econometric questions endemic to gravity-type estimations. We first tackle the issue of specification and selection biases due to zero flows by resorting to the quasi-maximum likelihood (QML) estimator recently proposed by Head et al. (2009). We then turn to the bias arising from possibly omitted common determinants for immigration and trade or from reverse causality. To circumvent both sources of endogeneity, we include country- and département-specific fixed effects in the regression, and we resort to an instrumental variables approach, where lagged stocks of foreign-born French residents serve as instruments. The previous orders of magnitude remain astonishingly robust to these econometric refinements.

Finally, we evaluate the heterogeneous impact of immigrants along two intertwined dimensions: the complexity of traded goods and the quality of institutions in the partner country. Indeed, Rauch and Trindade (2002) show that the trade-creating effect of Chinese networks is larger for differentiated products than for homogeneous or reference price goods. The fact that immigrants matter more for differentiated goods can be taken as a support for the information-cost-saving channel of transnational networks. Besides, Anderson and Marcouiller (2002) and Berkowitz et al. (2006) show that the quality of institutions impacts drastically on the volume of bilateral trade. Berkowitz et al. (2006) point out that the quality of institutions matters more for complex commodities, which exhibit characteristics difficult to fully specify in a contract. This is the reason why good institutions may reduce transaction costs when contracts are more incomplete. However, they do not study whether transnational networks could be a substitute for weak institutions, especially in the trade of complex products, as suggested by Rauch (2001).

Building on these insights, we disentangle the protrade impact of immigrants across both the partner’s institution quality and the complexity of traded goods. In this respect, our paper emphasises two main innovating results. First, immigrants especially matter for the imports of complex goods, regardless of institution quality in the home country. Turning to the imports of simple products, immigrants matter only when the quality of institutions at home is weak. Therefore, immigrants do not, holding institutional quality constant, encourage imports of simple goods, but do encourage imports from countries with weak institutions. Consequently, our paper adds to the literature the idea that imports of simple goods do not provide the informational challenges that immigrants can help overcome, but that immigrants still may play a role in promoting trade if the source of ‘simple’ imports is a foreign country with weak legal institutions. Second, the trends are less marked for exports. The protrade impact of immigrants on exports is positive only when they come from countries with weak institutions, regardless of the complexity of products.

The remainder of the paper proceeds as follows. Section 2 presents the augmented gravity specification we use to evaluate the trade-creating impact of foreign-born French residents and discusses several econometric issues. It also describes the trade and immigration data for French regions. Section 3 presents the benchmark empirical results. Section 4 disentangles the

1 In this respect, Dunlevy (2006) is a noticeable exception. He shows that the impact of immigrants on US states exports is more important when institutions in the home country are weak.
trade-creating impact of immigration across simple or complex products and across countries with different quality of institutions. Section 5 concludes.

2. MODEL SPECIFICATION, ECONOMETRICS AND DATA

To investigate the protrade effect of social networks, we need a benchmark to evaluate the amount of trade expected absent any immigrants’ settlements. Following Combes et al. (2005), we present the gravity norm we use to provide this benchmark. This section also discusses some of the econometric pitfalls traditionally encountered in gravity estimations. The following presentation draws on the exposition of Head et al. (2010).

a. Model Specification

The rationale behind the gravity model is that the value of trade between two locations \((y_{ij})\) is generated by the adjusted economic sizes of both the supplying location \(i (S_i)\) and the demanding location \(j (M_j)\) and inhibited by all the sources of ‘trade resistance’ between them \((\phi_{ij})\):

\[
y_{ij} = G S_i M_j \phi_{ij},
\]

\((1)\)

\(G\) is a factor that does not vary across regions. Head et al. (2010) refer to \(S_i\) and \(M_j\) as the monadic terms and \(\phi_{ij}\) as the dyadic term. The usual practice is to log-linearise this equation and to find proxies for the monadic and dyadic terms:

\[
\ln y_{ij} = \ln G + \ln S_i + \ln M_j + \ln \phi_{ij}.
\]

\((2)\)

Anderson and Van Wincoop (2003) provide clear-cut theoretical microfoundations for the monadic terms: they depend not only on nominal economic size (for instance GDP), but also on nonlinear functions of all pairwise dyadic terms, called the ‘multilateral resistance indices’ (MRIs). A proper control for these monadic terms in gravity estimations is challenging.\(^2\) The primary question we focus on is whether the spatial distribution of immigrants coming from a country \(j\) affects the trade of hosting départements with such country. Hence, we are not interested in the country- or département-specific determinants of trade. This is the reason why we adopt a fixed-effect approach à la Anderson and Van Wincoop (2003) and introduce two sets of dummies in the gravity equation. The inclusion of country-fixed effects \((f_j)\) is meant to control for all standard country-specific determinants of trade: membership to a common trade or currency bloc (e.g. the Eurozone or the European Union), landlocked nature, colonial ties or common languages. The other set of dummies \((f_i)\) controls for the département-specific determinants of trade, such as the density of economic activity or any natural or artificial

\(^2\) Head et al. (2010) give a clear review of the state of the art on the econometric specification of the gravity equation. Four solutions are encountered in the literature: (i) a nonlinear approach, proposed by Anderson and Van Wincoop (2003), where MRIs are explicitly computed, (ii) a fixed-effect approach, also proposed by Anderson and Van Wincoop (2003), where monadic terms are controlled for by a set of importer and exporter dummies, (iii) the bonus vetus OLS approach, proposed by Baier and Bergstrand (2009) and recently adapted by Behrens et al. (2012) based on spatial econometrics, where first-order Taylor expansions of MRIs are introduced in the specification, and (iv) the tetrad approach, proposed by Head et al. (2010), where monadic terms are suppressed thanks to the computation of export ratios.
endowments. Finally, it is worth noting that, in this two-way fixed-effect setting, only the dyadic determinants \(\phi_{ij} \) of bilateral trade can be identified.

Regarding this dyadic term, we follow Combes et al. (2005) and assume that trade costs do not only depend on distance and contiguity, but also are inversely correlated with the number of immigrants coming from country \(j \) settled in region \(i \). We choose \(\phi_{ij} \) as a multiplicative function of (i) the great circle distance between \(i \) and \(j \), (ii) a dummy indicating whether or not the \(\text{département} \) and the country are contiguous,\(^3\) and finally, (iii) the stock of foreign-born residents in \(i \) originating from country \(j \), \(\text{mig}_{ij} \):

\[
\phi_{ij} = \text{dist}_{ij}^\beta (1 + \text{mig}_{ij})^\gamma \exp(\gamma \text{contig}_{ij}).
\]

(3)

We add an error term \(\epsilon_{ij} \) that controls for all unobservable dyadic terms uncorrelated with distance, contiguity or immigrants’ stock. The baseline specification we estimate is thus the following two-way fixed-effect log-linearised equation:

\[
\ln y_{ij} = f_i + f_j - \beta \ln \text{dist}_{ij} + \gamma \text{contig}_{ij} + \ln (1 + \text{mig}_{ij}) + \epsilon_{ij}.
\]

(4)

In what follows, we estimate this specification for exports and imports separately.

\[b. \text{Econometric Issues}\]

Three major econometric problems are usually encountered when estimating gravity models. The first problem deals with the treatment of zero flows. The log-linearised specification (4) can only be estimated on strictly positive flows. Various methodologies have been proposed to control for the selection bias arising from keeping positive flows only. Dunlevy (2006) takes the logarithm of one plus the value of the flow as a dependent variable. He also estimates a Tobit model with an arbitrary zero threshold. Herander and Saavedra (2005) use the extended Tobit estimation first proposed by Eaton and Tamura (1994), where the threshold is estimated. This technique, also used by Wagner et al. (2002), rests on a maximum likelihood estimation of the log-linearised model.

A second issue concerns the heteroscedasticity of error terms in levels. In theoretical models, indeed, the gravity equation takes a multiplicative form, as in specification (1); hence, if the error term in levels is heteroscedastic, OLS estimates for the log-linearised model are biased.\(^4\) To tackle simultaneously the zero-flow and the heteroscedastic issues, Santos Silva and Tenreyro (2006) initiated a novel approach by estimating the gravity equation in levels. They propose a easy-to-implement QML estimation for the gravity equation, under the assumption that error terms in levels are distributed according to a Poisson distribution. These authors find that the elasticity of trade flows to distance is twice as small as the one estimated from OLS. However, the Poisson specification builds on the assumption that conditional variance equals conditional mean in the data \(\mathbb{V}(y_{ij}|x_{ij}) = \mathbb{E}(y_{ij}|x_{ij}) \). Head et al. (2009) provide a

\(^3\) This dummy is equal to one for only a small subset of \(\text{départements} \) contiguous to Belgium/Luxembourg, Germany, Switzerland, Italy or Spain.

\(^4\) This is due to Jensen’s inequality, according to which the expected value of the logarithm of a random variable is not equal to the logarithm of the expected value of this variable. Furthermore, the expected value of the logarithm of a random variable depends not only on the expected value of the variable, but also on the other moments of its distribution, especially the variance. Under heteroscedasticity in levels, this variance is a function of explanatory variables, which generates endogeneity in the log-linearised model.
more robust two-step negative binomial (2NB) procedure that allows the conditional variance to be a quadratic function of the mean, \(\text{Var}(y_{ij}|x_{ij}) = E(y_{ij}|x_{ij}) + \eta^2 E(y_{ij}|x_{ij})^2 \). Hence, in what follows, we compare baseline OLS and 2NB estimates in order to test whether the protrade effect of immigrants is robust to these two presumably important biases: zero flows and heteroscedasticity in levels.

The third issue is endogeneity, which may arise from two major sources: omitted variables and reverse causality. At the national scale, one can imagine that preferential links between two countries (resulting from a common colonial history for instance) generate simultaneously trade and immigrant flows. Furthermore, the existence of a strong trade partnership may push people to migrate, creating a reverse causality between trade and immigration. Gould (1994) provides two reasons to believe that cross-section estimations actually preclude the endogeneity bias, at the national level. First, migrations are expected to be more exogenous than trade flows, because they are determined by family reunifications in the first place. As recently analysed by Thierry (2004), this is also a plausible explanation for France. Second, in addition to family entrance motivations, immigration inflows are conveyed by wage differentials and the pre-existence of a same native/speaking community, rather than by trade opportunities. This is also what suggests the analysis conducted by Bartel (1989) or Munshi (2003) for the United States and by Jayet and Bolle-Ukrayinchuk (2007) for France.

Furthermore, these two sources of endogeneity are partially mitigated when we turn to infra-national data. In specification (4), the country- and region-fixed effects control for a large set of common observable and unobservable determinants for trade and immigration flows. Nevertheless, it could be argued that reverse causality and omitted variables are still likely to prevail at the infra-national level. To be sure that this relationship is not driven by omitted variables, Wagner et al. (2002) control for the commonality of language, that is, the probability that a random citizen of a given region speaks the same language as a random citizen of the trading partner. We cannot compute such a variable in the French case. We follow another route and instrument the current stock of immigrants with past stocks in 1975, 1982 and 1990. These lagged stocks are valid instruments as long as they determine the current stock of immigrants and do not determine current trade flows beyond their effect on the current stock of immigrants. We provide further support for this view in what follows. The instrumental variables approach has been rarely implemented in the literature.6

\[c. \textbf{Data} \]

Trade data consist in the exports and imports of 94 French metropolitan départements with around 100 countries. French decentralised customs services record the value of trade flows exclusive of transit shipments, as well as the origin/destination of shipments, that is, those where goods are actually produced/consumed. Although trade values are available since 1978, we focus exclusively on the recent period to ensure data compatibility with immigrants’ stocks. Furthermore, in order to prevent noisy observations due to time-specific shock (such as the euro adoption), we average trade flows over three years (1998, 1999 and 2000) for each département–country pairs.

5 Gourieroux et al. (1984) show that QML estimators are consistent as long as the expected value of the dependent variable is well specified and thus robust to an error in the specification of the true data generating process for the error term. See Cameron and Trivedi (2005) for further details.

6 Combes et al. (2005) stands as an exception.
Trade flows are originally available at a very disaggregated industrial level, according to the Standard Goods Classification for Transport Statistics (NST/R classification). We match this classification with the one proposed by Rauch (1999) to characterise the complexity or the degree of differentiability of products.\(^7\)

The 1999 French population census provides us with the exhaustive information on the number of foreign-born residents by département and country pairs. We define immigrants as residents born abroad with a foreign nationality. In the empirical part, we also use the lagged stocks of immigrants to tackle the endogeneity issue. These figures are provided by French population censuses for the years 1975, 1982 and 1990. Appendix A provides further details on exports, imports and immigration data.

It is worth stressing that most of the variability in the data comes from the cross-country dimension of the sample. For instance, the regression of trade flows on country-specific dummies returns an adjusted \(R^2\) of 51 per cent for exports, 61 per cent for imports and 70 per cent for immigration.

We wipe out this cross-country variation with a set of country-fixed effects. We also include département dummies to control for the common observable or unobservable determinants of trade and immigrants inside France.

Due to the introduction of these two sets of dummies, the protrade impact of immigrants is identified along the within-country and within-département data variability. Table 1 depicts the within-country and within-département correlation between exports, imports, distance and immigration.\(^8\) As expected, distance is negatively correlated with exports and imports, the correlation being stronger for imports. By way of contrast, immigration is significantly and positively correlated with both exports and imports. Distance and immigration are also negatively correlated, as it is well known that immigration flows also share a gravity pattern. Appendix A provides further summary statistics on the data.

3. THE PROTRADE EFFECT OF IMMIGRANTS

a. Benchmark Results

Table 2 provides the basic results drawn from estimating specification (4). In columns labelled OLS, we report the results drawn from the log-linear form (null flows are left out of

\(^7\) See Appendix B for details.

\(^8\) More formally, this is the correlation between the residuals of the regression of each variable on country-specific and département-specific dummies.
We also estimate the same specification in levels (columns 2NB). We run this regression twice: first on the sample restricted to positive flows (columns (3) and (7)), and second on the whole sample (columns (4) and (8)). We run two sets of regressions for exports and imports separately.

(i) Log-linear Specification

In columns (1) and (5), trade impediments are proxied by distance and contiguity only. Elasticity has expected signs. Exports, as well as imports, decrease with distance and increase with contiguity. The elasticity of imports to distance is twice larger than that of exports. Although there is not any obvious reason for such a phenomenon, it is worth recalling that, in this two-way fixed-effect setting, elasticity is estimated on the within-variability of the data. Hence, identification relies drastically on close countries for which distance differentials across regions remain high in comparison with countries located further away. For instance, Paris and Marseille are almost equally distant from the United States, but not from Germany. For more distant countries, the variability in distance is reduced. Nevertheless, the variability in trade flows remains fairly high: a small difference in distance can be associated with a large difference in trade values.

In columns (2) and (6), we add the stock of immigrants in the specification in logs. Contrary to most of the previous regional studies, we are able to assess separately the impact of immigration on exports and imports. Immigrants have a strongly significant impact. They promote exports as well as imports: doubling their number yields a 7 per cent (2^{0.102} = 1.07) increase in the value of exports and a 4 per cent (2^{0.054} = 1.04) increase in the value of imports. The protrade effect of immigration on imports is almost twice smaller than on exports. This casts doubt on the existence of a preference channel. However, we will see later that such a difference, which is barely significant here, is in any case not very robust.

TABLE 2

<table>
<thead>
<tr>
<th></th>
<th>Exports</th>
<th></th>
<th></th>
<th>Imports</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS (1)</td>
<td>OLS (2)</td>
<td>2NB > 0</td>
<td>OLS (5)</td>
<td>OLS (6)</td>
<td>2NB > 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3)</td>
<td></td>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6)</td>
<td></td>
<td></td>
<td>(8)</td>
</tr>
<tr>
<td>Distance</td>
<td>-0.81*</td>
<td>-0.777*</td>
<td>-0.963*</td>
<td>-1.488*</td>
<td>-1.480*</td>
<td>-1.612*</td>
</tr>
<tr>
<td></td>
<td>(0.089)</td>
<td>(0.085)</td>
<td>(0.1)</td>
<td>(0.128)</td>
<td>(0.127)</td>
<td>(0.143)</td>
</tr>
<tr>
<td></td>
<td>-0.961*</td>
<td>-1.638*</td>
<td>-1.612*</td>
<td>-1.638*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contiguity</td>
<td>0.452*</td>
<td>0.273***</td>
<td>0.123</td>
<td>0.445**</td>
<td>0.342***</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>(0.167)</td>
<td>(0.163)</td>
<td>(0.163)</td>
<td>(0.198)</td>
<td>(0.201)</td>
<td>(0.205)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.237)</td>
</tr>
<tr>
<td>Immigrants</td>
<td>0.102*</td>
<td>0.091*</td>
<td>0.109*</td>
<td>0.054**</td>
<td>0.094*</td>
<td>0.089**</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.019)</td>
<td>(0.021)</td>
<td>(0.027)</td>
<td>(0.035)</td>
<td>(0.041)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>9,033</td>
<td>9,033</td>
<td>9,033</td>
<td>9,110</td>
<td>8,110</td>
<td>8,110</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.844</td>
<td>0.844</td>
<td>9,400</td>
<td>0.8</td>
<td>0.8</td>
<td>9,494</td>
</tr>
</tbody>
</table>

Notes:
(i) Country- and département-fixed effects are included in all regressions, but the related estimates are not reported here.
(ii) Robust standard errors in brackets, with *, ** and *** denoting significance at the 1, 5 and 10 per cent levels, respectively.
The trade-creating impact of immigrants is up to fourfold smaller than the standard estimates found in the literature, as we find an elasticity ranging from 0.05 to 0.12, in our more conservative specification. Therefore, most of the estimates provided in the literature are tainted with an upward omitted variable bias that can be controlled for by using country-fixed effects. Nevertheless, we still find an impact of immigrants nearly twice smaller than the 0.18 elasticity found by Herander and Saavedra (2005) for the US states’ exports, even though their study tackles the issue of endogeneity seriously. As we use the same fixed-effect strategy, the difference between our estimates and their elasticity might be mainly driven by the geographical scale of study. It is not surprising to find a lower trade-creating impact of immigrants at the scale of départements, which are much smaller than countries or even federal states: all the network effects possibly triggered by immigrants located in surrounding départements do not show up. The counterpart, however, is that we are more confident in the true causal rationale driving our estimated effect.

The impact of distance and contiguity is also reduced when the stock of immigrants is accounted for. Contiguity is only significant at the 10 per cent level. Its impact reduces drastically once immigrants are controlled for. Indeed, immigrants coming from neighbouring countries, such as Belgium, Germany or Italy, locate according to a gravity pattern. Consequently, the share of immigrants originating from these neighbouring countries is much higher in the regions behind the border than anywhere else in France.

(ii) Specification in Levels

We push further the evidence by testing the robustness of the results to two kinds of possible biases: specification and selection due to neglecting zero flows in the log-linear specification.

Columns (3)–(4) and (7)–(8) in Table 2 report the results of the 2NB estimation procedure (equation (4) in levels). The positive and significant impact of immigrants is confirmed. Furthermore, it is of the same order of magnitude than in the log-linear specification: doubling the number of immigrants from a country yields a 6.5 per cent increase in both the values of exports and imports with this trade partner. Hence, the results do not change drastically when moving to a log-linear specification. Furthermore, they are not driven by the zero-flow truncation. In columns (4) and (8), where null flows are included in the sample, results remain barely the same.

Finally, we provide further robustness checks based on different estimation techniques (see Table 3A in Appendix C). The orders of magnitude are virtually the same in all procedures, but the Poisson QML estimation. This is probably due to the assumption that conditional mean equals conditional variance, which would not be valid in our data. Therefore, the pro-trade effect of immigration is robust to both specification and selection biases. We now turn to the endogeneity problem in the log-linear specification.

b. An Instrumental Variables Approach

Despite the inclusion of fixed effects and the use of a fine geographical scale, our results could still be plagued by the endogeneity of immigrants’ stocks. We use an instrumental variables approach to circumvent this issue within the log-linear model. We choose the lagged stocks of immigrants for the years 1975, 1982 and 1990 as instruments.

9 See the summary table provided in Bandyopadhyay et al. (2008).
10 Nonlinear models, as the negative binomial model, remain quite hard to instrument, as reviewed by Windmeijer (2006). Instrumenting is all the more challenging in our setting as we include numerous dummies. This is the reason why, in this section, we exclusively focus on the log-linear specification.
Relevance of Instruments

In order to be relevant, instruments have to be correlated with the current stock of immigrants. Hence, we should observe some persistence in the geography of immigrants’ settlements within France, by country of origin. This is a well-known established empirical fact. For instance, Jayet and Bolle-Úkrayinchuk (2007) find that, in France, past settlements strongly determine the location of new immigrants, due to the existence of social networks or to family motives. Table 3 reports the pairwise correlations between past and current stocks of immigrants. We see that these correlations are indeed fairly high, even though they decrease as time lag raises. This is a first support for validating instruments.

Nevertheless, strict relevance depends on the partial correlation between the endogenous variable and the instruments, once the other exogenous regressors have been controlled for. Table 4 reports the OLS estimates of the traditional first step of the two-step instrumented regression. We further report the \(F \)-test of the joint significance of excluded instruments, as well as the Bound et al. (1995) partial \(R^2 \) (BJB \(R^2 \) hereafter). As shown by Baum et al. (2003), in the case of a single endogenous explanatory variable, these tests are sufficient to assess the relevance of instruments. According to the Staiger and Stock (1997) rule of thumb,\(^\text{11}\) our instruments are thus relevant. Nevertheless, in regression (4), the elasticity of the 1968 stock of immigrants is not significant. The weakness of instruments being often worse that the endogeneity bias itself, we choose to remain parsimonious, and leave this instrument out of the list.

Supporting the Validity of Instruments

In what follows, we estimate two instrumented models. In the first, we use the stock of immigrants in 1990 as the only instrument. This variable is actually the most highly correlated with the endogenous regressor, and it is nonmissing for most of the observations. Consequently, the model is just-identified, and the validity of the instrument, which cannot be tested, must be assumed. In the second model, we run a GMM-type instrumentation by introducing simultaneously the lagged stocks of immigrants in 1975, 1982 and 1990. Even though the number of missing observations drastically increases, the model is now over-identified. Hence, we can test for over-identification restrictions. We follow the suggestion of Baum

\(^\text{11}\) In the case of a single endogenous explanatory variable, a \(F \)-statistic below 10 is of concern. All our \(F \)-statistics are far >10.

TABLE 3
Pairwise correlations for instruments

<table>
<thead>
<tr>
<th></th>
<th>Correlation</th>
<th>Number of Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ln(1 + \text{Immigrants 1999}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln(1 + \text{Immigrants 1990}))</td>
<td>0.92</td>
<td>8,011</td>
</tr>
<tr>
<td>(\ln(1 + \text{Immigrants 1982}))</td>
<td>0.92</td>
<td>5,697</td>
</tr>
<tr>
<td>(\ln(1 + \text{Immigrants 1975}))</td>
<td>0.87</td>
<td>4,366</td>
</tr>
<tr>
<td>(\ln(1 + \text{Immigrants 1968}))</td>
<td>0.79</td>
<td>4,162</td>
</tr>
</tbody>
</table>

Note: All correlations are significant at the 1 per cent level.
et al. (2003) in the presence of heteroscedasticity and run the Hansen-J test. A rejection of the null hypothesis implies that the instruments do not fulfill the orthogonality conditions. Regarding exports, the statistic is equal to $\chi^2(2) = 0.45$ with a p-value at 0.8, whereas for imports, the value is $\chi^2(2) = 1.25$, with a p-value at 0.53. In both cases, we thus fail to reject the null hypothesis. The fail of the rejection of the null is a further proof of the validity of instruments.

(iii) Results From Instrumented Regressions

In the columns (1) and (5) of Table 5, we estimate the log-linear specification for all the observations for which the stock of immigrants in 1990 is nonmissing. This slightly reduces the sample. The protrade effect of immigrants is broadly the same for exports and imports, with an elasticity at 0.112. Doubling the stock of immigrants yields a trade increase of 8 per cent. This is the new benchmark against which we assess the endogeneity bias.

In columns (2) and (6), we report the estimates drawn from the just-identified model. Instrumentation confirms the significant and positive impact of immigration on exports and imports. Even though the elasticity is slightly reduced, which means that benchmark estimates were plagued by a small upward endogeneity bias, the orders of magnitude remain fairly stable, around 0.095. To the best of our knowledge, no such a formal robustness check had been proposed in the literature.

Columns (3) and (7) provide OLS estimates for the log-linear specification, based on the country pairs for which all past stocks of immigrants are nonmissing. This reduces drastically

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>$\ln(1 + \text{Immigrants 1999})$</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln(1 + \text{Immigrants 1990})$</td>
<td>0.566* (0.007)</td>
<td>0.503* (0.01)</td>
<td>0.488* (0.012)</td>
<td>0.505* (0.013)</td>
<td></td>
</tr>
<tr>
<td>$\ln(1 + \text{Immigrants 1982})$</td>
<td>0.218* (0.01)</td>
<td>0.242* (0.012)</td>
<td>0.24* (0.013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ln(1 + \text{Immigrants 1975})$</td>
<td>0.045* (0.011)</td>
<td>0.061* (0.013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ln(1 + \text{Immigrants 1968})$</td>
<td>0.012 (0.011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
(i) Country- and département-fixed effects are included in all regressions, but the related estimates are not reported here.
(ii) Standard errors in brackets, * and ** denoting significance at the 1 and 5 per cent levels respectively.
the number of observations. However, instrumented regressions reported in columns (4) and (8) provide estimates that are not significantly different from OLS results. This confirms that, even on this small subsample, the positive impact of immigration on trade is not driven by a reverse causality or an omitted variable bias.

To sum up, immigrants do have a positive and significant impact on both exports and imports. A doubling of the stock of immigrants increases the value of exports by 7 to 12 per cent, depending on the sample and the estimation procedure. The impact on imports, between 7 and 18 per cent, is slightly more variable, but of the same order of magnitude. We further find that these results are robust to specification and selection biases and that endogeneity introduces only a slight upward bias in OLS estimates.

4. PRODUCT COMPLEXITY, QUALITY OF INSTITUTIONS AND IMMIGRATION

In this section, we study the protrade effect of immigration along two intertwined dimensions: the degree of complexity (or differentiation) of traded products and the quality of institutions in partner countries.

a. The Complexity of Traded Goods

Rauch (1999) is the first to argue that trade impediments would depend on the degree of differentiability of traded products. He distinguishes differentiated goods from those sold on an organised market or possessing a reference price. In a gravity-type model of international trade, he provides convincing evidence that proximity, common language and colonial ties matter more for the former than for the latter. Using the same classification, Rauch and Trindade (2002) even argue that the trade-creating impact of immigration, the Chinese diaspora in
their study, is much more salient for differentiated than for homogeneous goods. Hence, trans-
national networks would bridge the information gap between international sellers and buyers
in a more salient way for trade in differentiated goods.

We investigate a similar conjecture for French départements and their international trade
partners. We first match the NST/R industrial classification with the four-digit SITC of
Rauch.12 We consider two types of goods only: simple and complex goods. Simple goods are
either those exchanged on an organised market or those possessing a reference price. Complex
goods are all the other ones, classified by Rauch as differentiated goods.13

We estimate now:
\[\ln y_{kij} = f_k + f_j - \beta \ln \text{dist}_{ij} + \gamma \text{contig}_{ij} + \alpha \ln(1 + \text{mig}_{ij}) + \epsilon_{kij}, \tag{5} \]
where \(k \) indices the type of goods, with \(k \in (\text{simple}, \text{complex}) \). Exports and imports, as well
as country and département dummies, are now commodity specific. Whereas we assume that
the distance and contiguity effects do not vary across goods,14 the elasticity of trade with
respect to the stock of immigrants is also commodity specific. Contrary to Rauch and Trind-
ade (2002), we run two separate regressions for exports and imports.

Table 6 reports the OLS estimates for specification (5) in log (columns OLS) and the 2NB
QML estimates for specification (5) in levels (column 2NB \(\geq 0 \)). A first striking feature is that
the trade-creating effect of immigration is now different for exports and imports. Recall that,
when the type of goods was not taken into account, the protrade effect of immigrants was of

<table>
<thead>
<tr>
<th></th>
<th>Exports</th>
<th></th>
<th>Imports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>2NB (\geq 0)</td>
<td>OLS</td>
</tr>
<tr>
<td>Simple</td>
<td>Complex</td>
<td>Simple</td>
<td>Complex</td>
</tr>
<tr>
<td>Distance</td>
<td>(-0.775^*)</td>
<td>(-0.951^*)</td>
<td>(-1.492^*)</td>
</tr>
<tr>
<td>Contiguity</td>
<td>(0.371^*)</td>
<td>(0.19)</td>
<td>(0.425^*)</td>
</tr>
<tr>
<td>Immigrants</td>
<td>(0.141^) (0.074^) (0.123^) (0.095^)</td>
<td>(0.029) (0.075^) (0.05) (0.113^)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>17,711</td>
<td>18,800</td>
<td>15,396</td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.809</td>
<td>0.766</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
(i) Country- and département-fixed effects are included in all regressions, but the related estimates are not reported here.
(ii) Robust standard errors in brackets, with * denoting significance at the 1 per cent level, respectively.

12 See Appendix B for further details.
13 Berkowitz et al. (2006) follow the same dichotomy. Results are not drastically changed if we consider three categories separately.
14 Allowing these elasticities to be commodity specific does not change the estimates of the impact of immigrants. However, it reduces the precision of the distance and contiguity estimates, but, as noted above, this remains difficult to interpret.
the same order of magnitude for exports and imports. By way of contrast here, immigration boosts the imports of complex commodities (with an elasticity at 0.113), whereas it has no significant impact on the imports of simple products.15 This is consistent with the idea that social networks, by providing market information and supplying matching or referral services, would matter more for the imports of complex products. Regarding exports, migrants have a significant impact on both simple and complex goods. The effect would be even slightly stronger for simple goods, even if the difference is not significant.

Such average elasticity could hide another source of heterogeneity, depending on the partner country characteristics, as recently suggested by Bandyopadhayay et al. (2008). In the following, we disentangle further the protrade impact of immigration according to the rules of law in partner countries, on aggregate flows first and then by goods type.

\textit{b. The Quality of the Trade Partner’s Institutions}

Some recent papers study the impact of institution quality on the volume of bilateral trade. In a matching model of international trade, Turrini and van Ypersele (2006) provide new evidence on the deterrent impact of legal asymmetries on bilateral trade between OECD countries, as well as between French regions. Besides, Anderson and Marcouiller (2002) establish that good institutions would reduce predation at the border. They find that a 10 per cent rise in a country’s index of transparency and impartiality yields a 5 per cent increase in its import volumes, other things equal (de Groot et al., 2004; Ranjan and Lee, 2007).

Berkowitz et al. (2006) add that the quality of the exporter’s institutions matters even more. They argue that, if some common contracts (as letters of credit, counter-trade agreements and prepayment) exist to offset the exporter’s risk of not getting paid, such devices are scarcer to offset the importer’s risk of late delivery and product defects. Therefore, formal institutions, such as courts and arbitration tribunals for seeking compensation, are of primary interest for importers. Most of the time, the courts or arbitration tribunals in the export country are indeed the last fallback for resolving disputes, the reason why the quality of institutions is more important in the export country.

Rauch (2001) puts forward the idea that transnational networks could be a substitute for weak institutions or weak mechanisms of arbitration. But, as far as we know, this effect has only been empirically studied by Dunlevy (2006), who restricts the focus to US states exports. We further investigate the conjecture of transnational network as a substitute for weak institutions on both the international exports and imports of French \textit{départements}. According to Anderson and Marcouiller (2002), the impact of immigration should be greater for exports, as immigrants mitigate any predation behaviour at the border of the importing country. According to Berkowitz et al. (2006), this should be the reverse as immigrants substitute for weak arbitration tribunals in the exporting country.

Crossing the effects of migrants and institutions may allow us to identity which one of the two previous views is the most salient. We use the rule-of-law index (RL) provided by Kaufmann et al. (2007) as a measure of the quality of institutions. This index measures ‘the extent to which agents have confidence in and abide by the rules of society, and in particular the

15 In the remaining, we comment the results associated with estimations in levels only, differences with estimates in logs being most of the time insignificant.
We proceed with the following estimation:

\[
\ln y_{ij} = f_i + f_j - \beta \ln \text{dist}_{ij} + \gamma \text{contig}_{ij} + \alpha \ln(1 + \text{mig}_{ij}) + \rho \text{RL}_j \times \ln(1 + \text{mig}_{ij}) + \epsilon_{ij}, \tag{6}
\]

where the (log of the) stock of immigrants is crossed with the RL in country j (RL_j).

In line with Rauch (2001), we conjecture that immigrants from partner countries with weak institutions have a larger impact on trade flows, in which case we expect a negative sign for \(\rho \).

One could argue that the quality of institutions is endogenous to trade openness and thus to the volume of trade. If this assertion is certainly right in general, we can forcefully argue that France remains a marginal trading partner for a large majority of countries in the sample. Hence, bilateral flows with France do not determine the quality of its trade partners’ institutions. Moreover, the largest trade partners of France are high-income countries, where the quality of institutions is already high.

Table 7 reports the estimates of specification (6). Note first that the direct trade impact of institution quality is captured by the country-specific dummy, and thus, it cannot be separately identified. Due to the normalisation of the RL to a zero mean, the average impact of immigrants is taken into account via the Immigrants variable. It is almost the same as in Section 3. The interacted term ‘RL \times Immigrants’ accounts for an heterogeneity in the immigrant effects that depends on institution quality in partner countries. Our results support the conclusion of

Kauffmann et al. (2007) provide six different measures of the quality of institutions. Due to the strong correlation between these measures, we restrict the focus to the RL. However, results are unchanged when another index is chosen. The index is decreasing in the quality of institutions and stands between 2.5 and 2.5. We proceed to a simple normalisation so that our sample mean would be zero and standard deviation would be one.
Dunlevy (2006). The coefficient is negative for exports: immigrants matter more when the quality of institutions is weak in the home country. We compute that the elasticity of exports to immigration ranges from 0.16, for the last country of the first decile of institution quality (Congo), to an insignificant 0.01, for the first country of the last decile (the Netherlands).

In addition to Dunlevy (2006), we also provide the related estimates for imports. The impact of immigration also presents a high heterogeneity. The elasticity ranges from 0.15 for the first decile of institution quality to a zero effect for the last decile. Finally, the above-mentioned mechanisms by which weak institutions could impact on trade flows are not exclusive. However, immigrants mitigate the trade-reducing impact of weak institutions in both directions.

c. Complex Products, Quality of Institutions and Immigration

According to our previous discussion, the protrade effect of immigrants depends on both the type of goods and the quality of institutions. Hence, it makes sense to study the triple interaction. In the following, we evaluate the cross-effect of institutions and immigrants for simple and complex goods separately. Results are reported in Table 8.

Significant differences between commodities are observed on imports. Regarding the imports of complex goods, the role of immigrants does not depend on the quality of institutions. Since for complex goods, immigrants are a real conduit for information, they matter regardless of institution quality. For simple goods conversely, immigrants do not matter on average, because trading such goods does not require further information enhancement; hence, the direct effect is not significant. This result holds unless the quality of institutions is low. In that case, immigrants, who substitute for institutions, play an important role, as shown by the negative significant effect of the interacted variable.

| TABLE 8 |
| Product type, quality of institutions and immigration |

<table>
<thead>
<tr>
<th></th>
<th>Exports</th>
<th></th>
<th>Imports</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>2NB ≥ 0</td>
<td>OLS</td>
<td>2NB ≥ 0</td>
</tr>
<tr>
<td></td>
<td>Simple</td>
<td>Complex</td>
<td>Simple</td>
<td>Complex</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Simple</td>
<td>Complex</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Simple</td>
<td>Complex</td>
</tr>
<tr>
<td>Distance</td>
<td>−0.856*</td>
<td>−1.008*</td>
<td>−1.527*</td>
<td>−1.654*</td>
</tr>
<tr>
<td></td>
<td>(0.072)</td>
<td>(0.089)</td>
<td>(0.098)</td>
<td>(0.126)</td>
</tr>
<tr>
<td>Contiguity</td>
<td>0.601*</td>
<td>0.389*</td>
<td>0.554*</td>
<td>0.299</td>
</tr>
<tr>
<td></td>
<td>(0.151)</td>
<td>(0.143)</td>
<td>(0.16)</td>
<td>(0.183)</td>
</tr>
<tr>
<td>Immigration</td>
<td>0.118*</td>
<td>0.058*</td>
<td>0.107*</td>
<td>0.084*</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.018)</td>
<td>(0.026)</td>
<td>(0.022)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.035)</td>
<td>(0.027)</td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td>(0.042)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RL * Immigration</td>
<td>−0.111*</td>
<td>−0.065*</td>
<td>−0.075*</td>
<td>−0.05*</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.011)</td>
<td>(0.015)</td>
<td>(0.012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.019)</td>
<td>(0.013)</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.021)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>17,711</td>
<td>18,800</td>
<td>15,396</td>
<td>18,988</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.806</td>
<td>0.766</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
(i) Country- and département-fixed effects are included in all regressions, but the related estimates are not reported here.
(ii) Robust standard errors in brackets, with * and *** denoting significance at the 1 and 10 per cent levels, respectively.
As for exports, neither the direct impact of immigration nor its crossed effect with institutions significantly differ between simple and complex goods. In both cases, immigrants enhance trade, even more that the quality of institutions is low, which matches aforementioned intuitions. The direct effect is slightly stronger and more heterogenous across rules of law for simple goods.

Finally, it is worth mentioning that the direct effect of immigrants is significant for exports, but not for imports. The rationale for this result could be the following. To penetrate foreign markets, exporters of simple goods need to collect many different types of information (for instance, on consumers’ habits, local retail networks), regardless of the quality of institutions in the destination country, whereas such information is not crucial to import simple goods. By way of contrast, exporting complex goods requires to collect additional product-specific information (for instance, on the quality process), beyond the one needed for simple goods. Consequently, the direct impact of immigrants is significant for the exports of both complex and simple goods, whereas it is significant for the imports of complex goods only.

5. CONCLUSION

The positive impact of immigration on trade is a well-established result. We add to the literature by assessing the crossed effect of immigration, goods complexity and institution quality. Even though numerous theoretical models underline this possible interaction, evidence remains very scarce.

When we do not disentangle the protrade effect of immigrants across goods and institutions, we find that the trade-creating impact of immigrants is slightly smaller than that found in the previous literature. This might be due to our careful estimation strategy, in which we consider variables in levels, country-fixed effects and instrumentation. However, these average effects hide a large heterogeneity across products and across trade partners.

The trade-enhancing impact of immigrants is more salient when they come from a country with weak institutions. Doubling the stock of immigrants from countries with the weakest institutions increases exports and imports by 10 to 12 per cent. Conversely, the impact of immigrants is barely significant for countries with good institutions.

Furthermore, immigrants substitute for weak institutions for the exports of both simple and complex goods. Regarding the imports of complex commodities, that is, those for which the information conveyed by immigrants is the most valuable, the protrade effect of immigrants overrides institution quality in the partner country. Conversely, even though immigrants do not enhance the imports of simple goods on average, they play an important role in interaction with the quality of institutions.

REFERENCES

APPENDIX A

DATA ON TRADE AND IMMIGRATION

1. Trade Flows

Trade flows come from the SITRAM data set provided by the French Ministry of Transport. It reports the value of imports and exports of 94 French metropolitan départements with around 200 trading partners all around the world. French départements are administrative units of much smaller and more regular size than US states or Canadian provinces. The mean area of French départements is 5,733 km2, with a coefficient of variation at 0.34 (when Corsica and overseas French regions are excluded), whereas the related figures are 162,176 km2 (with a standard deviation at 0.77) for US states (when Alaska and Washington, DC are included) and 606,293 km2 (with a standard deviation at 0.82) for Canadian provinces (when Nunavut, North-West and Yukon territories are excluded). However, the instrumentation strategy requires that countries remain comparable across time. And the decade 1990–2000 has seen a large deal of modifications in the drawing of countries with, for instance, the disaggregation of the former Soviet Union and of Former Yugoslavia. Hence, we recover those entities as they were before the separation:

- Four former single countries have been divided during the 1990s. In order to match the data set in 1999 with our explanatory variables, we thus aggregate Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgyzstan, Latvia, Lithuania, Moldova, Uzbekistan, Russia, Tajikistan, Turkmenistan and Ukraine in a single former Soviet Union. Czech Republic and Slovakia are aggregated in former Czechoslovakia, Bosnia, Croatia, Serbia, Montenegro, Slovenia and Macedonia in former Socialist Republic of Yugoslavia, Eritrea and Ethiopia in former Ethiopia.
- We also aggregate three countries that have been reunified during the 1990s: Germany (former DDR and former BRD), Yemen (former South and North Yemen) and the Emirates.
We further consider as a single country: (i) Belgium and Luxembourg, (ii) Italy, San Marino and Vatican, (iii) Denmark and Faroe Islands and (iv) Switzerland and Lichtenstein. After this manipulation, 161 countries remain in the data set, with at least one positive flow towards or from a French département.

As noted in the main text, the value of trade flows is generally exclusive of transit shipments. Petroleum products are, however, a noticeable exception. Hence, we leave them out of the sample. We also neglect postal, pipers and other too specific shipments.

The distributions of exports and imports across countries are right-skewed, with a set of few countries accounting for the largest amount of trade flows: nine countries only account for more than 70 per cent of the value of exports and of imports (Germany, Belgium/Luxembourg, Spain, Italy, the Netherlands, United Kingdom, United States, Switzerland and Japan). It is also worth noting that half of the sample (80 countries) accounts for 98 per cent (99 per cent) of the value of exports (imports). Furthermore, import and export countries are very similar: the Spearman’s rank correlation between importers and exporters stands at 0.86.

b. Immigration

The 1999 French population census, from the French National Statistical Institute (INSEE), provides us with exhaustive information on the number of foreign-born residents by département. For each foreign-born resident, we know the country of birth, the nationality at birth and the nationality at the time of the census. We are then able to distinguish between (i) French citizens born abroad, (ii) foreign citizens born in France, (iii) foreign citizens born abroad but having acquired French nationality, and finally (iv) foreign citizens born abroad with a foreign nationality at the time of the census.

As the place of birth is more important in the construction of a social network than the current nationality, we consider the narrower concept of immigrant. The French Statistical Institute disentangles a foreigner, that is, a person whose current nationality is not French, from an immigrant, that is, a person born abroad with a foreign nationality, regardless of his/her nationality at the time of the census. Hence, if an immigrant acquires French nationality, he/she cannot be considered a foreigner anymore, but remains an immigrant. Note that for a few countries, it is necessary to sort apart French citizens born abroad from foreign-born French citizens. The Algerian case is very enlightening in this respect. Eighteen French départements count more than 10,000 French citizens born in Algeria, who are not immigrants (Algeria was a colony of France until 1962). The settlement pattern of French citizens born in Algeria and Algerian-born citizens is not completely similar, with a correlation at 0.64 only.

The distribution of immigration across countries is also highly right-skewed. Eight countries account for more than 70 per cent of immigrants to France (Algeria, Morocco, Portugal, Italy, Spain, Tunisia, Germany and Turkey). Most of these countries do not stand in the top nine French trading partners. The geography of trade and immigration is thus quite different. The correlation between immigration and exports (imports) stands at 0.65 (0.56). This correlation is only 0.22 (0.20) when we restrict the sample to countries belonging to the upper median part of the distribution.

To prevent the results from being driven by noisy observations and the skewness of our three variables of interest, we restrict the sample of exports, imports and immigration stocks
to the upper median distribution countries. This leads us to consider a sample of 100 countries for exports and a sample of 101 countries for imports.

c. Description of the Instruments

The French population censuses of 1968, 1975, 1982 and 1990 provide us with a further reliable information on the number of immigrants by département and by country of origin, used as instruments to tackle the endogeneity issue. It is worth noting that, for earlier censuses (1968 and 1975), information is not exhaustive as it is extracted from a representative sample (one in four of the whole French population). Moreover, for these years, we only know the nationality of the residents (and not the country of birth) for a limited number of countries. Hence, the number of observations reduces drastically when we use these variables as instruments. The 1982 and 1990 censuses provide the nationality of the respondent, as well as his/her country of birth. We are then able to recover an instrument variable closer to the endogenous explanatory variable.

d. Summary Statistics

Table A1 depicts further summary statistics on the distributions of exports, imports, distance and immigration over the département–country pairs. In the panel of exports, there are 9,033 pairs (among 9,400 possibilities) of strictly positive flows, against 8,110 (among 9,494 possibilities) for imports, with a slightly greater pair average value (31,980 thousands of euros against 30,443 for exports). The frequency of null flows is then quite limited here, in comparison with Helpman et al. (2008) for instance (half of the sample).

<table>
<thead>
<tr>
<th>TABLE A1</th>
<th>Summary statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Strictly positive exports (9,033/9,400)</td>
<td></td>
</tr>
<tr>
<td>Exports</td>
<td>30,443.2</td>
</tr>
<tr>
<td>Distance</td>
<td>5,321.9</td>
</tr>
<tr>
<td>Immigrants</td>
<td>470.6</td>
</tr>
<tr>
<td>All exports (9,400)</td>
<td></td>
</tr>
<tr>
<td>Exports</td>
<td>29,254.6</td>
</tr>
<tr>
<td>Distance</td>
<td>5,338.8</td>
</tr>
<tr>
<td>Immigrants</td>
<td>452.8</td>
</tr>
<tr>
<td>Strictly positive imports (8,110/9,494)</td>
<td></td>
</tr>
<tr>
<td>Imports</td>
<td>31,079.7</td>
</tr>
<tr>
<td>Distance</td>
<td>5,626.0</td>
</tr>
<tr>
<td>Immigrants</td>
<td>519.2</td>
</tr>
<tr>
<td>All imports (9,494)</td>
<td></td>
</tr>
<tr>
<td>Imports</td>
<td>26,549.0</td>
</tr>
<tr>
<td>Distance</td>
<td>5,577.7</td>
</tr>
<tr>
<td>Immigrants</td>
<td>448.1</td>
</tr>
</tbody>
</table>

Notes:
(i) Exports and imports are in thousands of euros, immigrants in number of foreign-born French residents.
(ii) Distance is the average number of kilometres between capital cities, weighted by their population size.
APPENDIX B
MATCHING THE NST/R AND RAUCH’S CLASSIFICATIONS

The NST/R classification consists in a three-tier nomenclature: 10 chapters, 52 groups and 176 positions. We match each of these positions with the nomenclature built by Rauch (1999), who classifies the 1,089 goods of the four-digit SITC (rev. 2) system into three broad categories: the goods sold on an organised market, the reference price goods or neither of the two. Rauch (1999) provides a conservative and a liberal classification. In the main text, we use the conservative one, but we check that the results are not sensitive to the alternative classification. We cannot define a one-to-one mapping between the categories of Rauch and the NSTR classification. Therefore, we measure how each position distributes across these three broad categories.

To this aim, we use a correspondence between the six-digit harmonised standard (HS6) and the NST/R classifications on one side and between the HS6 and the classification of Rauch (1999) on the other side. The distribution of each position across the three Rauch’s categories is computed as the ratio of the number of HS6 items belonging to each category over the number of HS6 items composing a given position.

To compute a correspondence table between the NST/R and HS6 classifications, we first use the correspondence table between the eight-digit combined nomenclature (CN8) and the NST/R classifications provided by the European Statistical Institute (EUROSTAT; available at: http://ec.europa.eu/eurostat/ramon/otherdocuments/index.cfm?TargetUrl=DSPOTHERDOCDTL). We then use another correspondence table provided by EUROSTAT for the year 1988 to match each CN8 item with only one item of the HS6 classification (available at: http://ec.europa.eu/eurostat/ramon/relations/index.cfm?TargetUrl=LSTREL).

In order to compute a correspondence between the HS6 and the classification of Rauch (1999), we use a correspondence table between the 4-digit SITC (rev. 2) and the 10-digit harmonised standard (HS10) classifications provided by Feenstra (1996; available at: http://cid.econ.ucdavis.edu/data/usixd/imports/conimp89).

Table A2 provides the distribution of each NST/R chapter across the three broad categories defined by Rauch. As expected, differentiated goods mainly appear in chapter 9 (machinery, transport equipment, manufactured articles) and homogeneous goods in chapters 0 and 4.

TABLE A2
Distribution of the nine NST/R chapters across Rauch’s categories (in per cent)

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Label</th>
<th>n</th>
<th>r</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Agricultural products and live animals</td>
<td>19.69</td>
<td>25.87</td>
<td>54.44</td>
</tr>
<tr>
<td>1</td>
<td>Foodstuffs</td>
<td>19.26</td>
<td>67.6</td>
<td>13.13</td>
</tr>
<tr>
<td>2</td>
<td>Solid mineral fuels</td>
<td>13.77</td>
<td>86.23</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Ores and metal waste</td>
<td>0</td>
<td>60.54</td>
<td>39.46</td>
</tr>
<tr>
<td>5</td>
<td>Metal products</td>
<td>29.91</td>
<td>63.56</td>
<td>6.53</td>
</tr>
<tr>
<td>6</td>
<td>Crude and manufactured minerals</td>
<td>66.6</td>
<td>33.4</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Fertilisers</td>
<td>3.82</td>
<td>96.18</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Chemicals</td>
<td>59.42</td>
<td>40</td>
<td>0.58</td>
</tr>
<tr>
<td>9</td>
<td>Machinery, transport equipment and manufactured articles</td>
<td>96.5</td>
<td>3.17</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Notes:
(i) $n =$ differentiated goods, $r =$ reference price goods, $w =$ goods sold on an organised market.
(ii) Chapter 4 (petroleum products) is left out of the analysis.
APPENDIX C
ROBUSTNESS CHECKS

The first column of Table A3 reports OLS estimates equivalent to those presented in Table 2. The second column, OLS \((y + 0.1)\) uses the related estimates for the log-linearised model, where the dependent variable has been replaced by the logarithm of 0.1 plus the flow (in thousands of euros). This methodology has been used by Dunlevy (2006) and Bénassy-Quéré et al. (2007) among others. The third column (ET-Tobit) gives the gravity estimates building on a modified Tobit estimator, as suggested by Eaton and Tamura (1994). This method has been used by Herander and Saavedra (2005).

The three following columns report QML estimates. The first column (2NB) depicts the results of a 2NB procedure similar to that of Table 2. The second column (GPML) presents another QML estimator, where we assume that the error term follows a gamma distribution. The third column (PPML) depicts the Poisson QML estimates used by Santos Silva and Tenreyro (2006).

TABLE A3
Results from different specifications

<table>
<thead>
<tr>
<th>In Log</th>
<th>In Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>(OLS)</td>
<td>(OLS (y + 0.1))</td>
</tr>
<tr>
<td>Exports (>)</td>
<td>0.102* (0.018)</td>
</tr>
<tr>
<td>Exports ((\geq0))</td>
<td>– (0.021)</td>
</tr>
<tr>
<td>Imports (>)</td>
<td>0.054** (0.027)</td>
</tr>
<tr>
<td>Imports ((\geq0))</td>
<td>– (0.027)</td>
</tr>
</tbody>
</table>

Note:
Standard errors in brackets, with * and ** denoting significance at the 1 and 10 per cent levels, respectively.