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Abstract

Affl uent households can respond to taxation with means that are not eco-
nomically viable for the rest of the population, such as sophisticated tax
plans and international tax arbitrage. This paper studies an economy in
which an inequality-averse social planner faces agents who have access to
a tax-avoidance technology with increasing returns to scale, and who can
shape the risk profile of their income as they see fit. Scale economies in
avoidance imply that optimal taxation is regressive at the top. This in turn
may trigger excessive risk taking.



Introduction

The taxation of affl uent households periodically comes to the forefront of
the public debate. The view that the rich should pay more taxes than they
currently do recently gained influence in the U.S. and in Europe. Likely
reasons include the need for fiscal consolidation resulting from the financial
and economic crisis that erupted in 2008, and long-term trends of increasing
income inequality and decreasing top marginal tax rates, in particular in the
U.S. The "Buffett rule" proposed by the Obama administration responded
in particular to the spread of the sentiment that effective tax rates have
become overly regressive.1 The view is that low effective tax rates for the
rich result not only from low nominal tax rates, but also from increased tax
avoidance by the most affl uent households.

This paper develops a new theoretical framework to study the taxation of
the rich. Our motivation is twofold. First, the taxation of the rich has first-
order implications for public finances, simply because affl uent households
collect a significant fraction of aggregate income. In 2011, the top quintile
and percentile of the U.S. income distribution respectively collected 36%
and 20% of aggregate income (Piketty and Saez, 2013). Second, taxing the
rich raises issues that are, in our view, quite different from that raised by
the taxation of the rest of the population.

Taxing affl uent households raises specific issues because the rich can
respond to taxation with means that are by and large unavailable to the
rest of the population. This paper studies the taxation of a population
of agents that can avail themselves of two such means: tax avoidance -
the minimization of one’s tax liabilities by legal or quasi-legal means, and
income-risk shifting.

Consider first risk shifting. Households that are "rich" in the sense
that they are on top of the income distribution are also typically "rich" in
the sense that they are on top of the wealth distribution (Diaz-Gimenez,
Glover, and Rios Rull, 2011). High wealth gives them access to a large set
of sophisticated financial instruments with few risk-taking restrictions (e.g.,
investments in hedge funds), and enables them to hire the expertise required
to handle them. Rich households therefore have a free hand at shaping the
risk profile of their capital income, which is a sizeable fraction of their total
income. By contrast, for the rest of the population, labor income, whose risk
profile can be altered only through occupational choices, is a larger fraction

1This rule applies a minimum tax rate of 30 percent on individuals making more than
a million dollars a year.
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of income. Investment is limited to a more narrow and more regulated set
of vehicles. Gambling options are available but typically come at a high
expected loss.

Second, regarding tax avoidance, the saying that "the poor evade and the
rich avoid" epitomizes that avoidance is concentrated at the top of the in-
come distribution. We believe that this is so because common tax-avoidance
techniques typically display scale economies. They are therefore profitable
only when spread over suffi ciently large pre-tax resources. We actually view
this as the key economic distinction between tax avoidance and tax evasion.
Evasion is an outright breach of tax law, which should naturally be thought
of as displaying diseconomies of scale. It seems evident that concealing larger
amounts from the tax authority, and converting them into secret consump-
tion comes at a higher unit cost. Obvious reasons include the diffi culty of
settling large transactions with cash, and the lack of discretion entailed by
an affl uent lifestyle.

By contrast, tax-avoidance techniques entail costs that are not very sen-
sitive to the income base to which they are applied. There are two main
forms of tax avoidance. First, a major source of tax avoidance consists in
tax plans that shape the timing, nature, and amount of taxable income so
as to minimize taxes. Typical schemes consist in relabelling labor income
as capital income, or in borrowing against capital gains instead of realizing
them to consume. The ability of private equity and hedge fund managers to
structure their pay as carried interest, which is taxed as dividends instead
of labor income, is a simple example of such avoidance. Sophisticated tax
planning involves significant fixed costs associated with the setup of com-
plex legal structures and the remuneration of tax planners’human capital.
Shackelford (2000) describes several widespread tax-avoidance plans, and
notes that "these plans are restricted to the wealthiest of taxpayers because
the implementation fees are so large that the income or transfer taxes saved
must be enormous to justify purchasing the tax plan." That wealth managers
and sophisticated tax planners impose high minimum accounts is consistent
with such significant fixed costs. Also consistent with this, Lang, Norhass,
and Stahl (1997) use detailed consumer survey data in Germany to show
that the difference between legislated and effective tax rates increases with
respect to income, and that a sizeable fraction of it is due to the exploitation
of legal tax write-offs. In the U.S., the Congressional Budget Offi ce estimates
that more than 90 percent of the benefits of reduced tax rates on capital
gains and dividends will accrue to households in the highest income quintile
in 2013, with almost 70 percent going to households in the top percentile.

A second important form of tax avoidance consists in international tax
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arbitrage, by locating assets or establishing fiscal residence in low-tax coun-
tries.2 This form of tax avoidance also involves legal and transportation costs
that are not very sensitive to income. Consistent with this, using data on
the geographic mobility of soccer players, Kleven, Landais and Saez (2013)
document that it is only at the top of the income distribution that location
choice is highly elastic to taxes. Studying the impact of the Danish prefer-
ential tax scheme for high-earning immigrants, Kleven, Landais, Saez, and
Schultz (2013) also document a high elasticity of migration of top earners.
Another international tax arbitrage technique consists in keeping one’s fis-
cal residence unchanged while making undeclared bank deposits in countries
with strong bank secrecy. Strictly speaking, this pertains to evasion rather
than avoidance, as it is illegal. But it it is a virtually undetectable fraud
(holding international treaties fixed), and involves the same type of fixed
legal and administrative costs as avoidance. Thus we consider it to be part
of the tax-optimization techniques that we seek to model in this paper. Ex-
ploiting inconsistencies in international accounts, Zucman (2013) estimates
that 8% of total household financial wealth is held in tax havens. Recent
attempts by the G20 at cracking down on this type of evasion may reduce
its magnitude in the near future. Yet, Johannesen and Zucman (2013) offer
suggestive evidence that rather than repatriating funds in response, evaders
tend to relocate them to alternative less compliant havens.

We develop a model that simply formalizes tax avoidance as follows. We
study the situation of a social planner who seeks to implement inequality-
averse views in an endowment economy. The planner faces an informational
friction. Agents privately observe their endowments, and can convert the
fraction that they do not report to the planner into secret consumption
at some cost. In line with the above discussion, we capture avoidance by
assuming that this conversion has increasing scale returns. The optimal re-
distribution scheme implemented by the social planner in the presence of
such tax avoidance is simple. Net income has a fixed component and a vari-
able one that increases with respect to the reported pre-tax income. This
scheme is such that agents report their entire income: there is no avoidance
in equilibrium. The fixed component equally splits among agents the total
tax capacity of the planner, defined as the total resources that he could
extract from the population if he was not redistributing any of it. The vari-
able component makes every agent indifferent between reporting his entire

2An extreme form of tax avoidance is that of "perpetual travelers" - individuals who
spend suffi ciently little time in any given country that they have no identified fiscal resi-
dence.
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income or reporting the lowest income level in the population. This simple
scheme has several interesting properties. First, taxation cannot be progres-
sive above some income threshold. This is consistent with Landais, Piketty,
and Saez (2011), who show that in France, income taxes have become re-
gressive above the 5% top income quantile. Second, pre-tax inequality may
reduce the tax capacity of the social planner. Tax capacity is lower when
pre-tax income distribution is riskier in the sense of second-order stochastic
dominance. As a result, more pre-tax inequality among very top earners
affects net consumption relatively more severely at the other end of the
distribution - low pre-tax income levels.

We then add a risk-shifting friction to the tax-avoidance one. We in-
troduce an initial stage during which agents can add any fair lottery to
their endowments. A key consideration then is whether the social plan-
ner can credibly commit to a scheme that he announces before agents take
their gambles, or if he lacks commitment, and redistributes instead in an ex
post optimal fashion after gambles are realized. Absent commitment power,
agents do gamble in equilibrium because they expect their utility to be non
concave over pre-tax income given the regressivity of ex post optimal tax-
ation. Thus in this case, tax avoidance does not occur in equilibrium but
yet creates more pre-tax inequality. In the case of a fixed cost of avoidance,
agents whose endowment is below that cost favor long-shot gambles that
yield a large positive return with a small probability. Those that earn more
than this cost prefer bets that generate frequent small gains at the cost of
large rare losses. We thus predict that the demand for this latter risk profile,
deemed "fake alpha" in the finance literature, should increase as the right
tail of income distribution becomes fatter. If the planner can commit, then
he prefers to concavify himself agents’utility, rather than let agents do it
themselves with gambles that increase inequality. Thus agents do not shift
risk in equilibrium in this case. The planner uses an ex post ineffi cient tax
scheme that is less regressive and grants a lower minimum net consumption
level.

The paper also studies a dynamic version of this economy. If the plan-
ner cannot commit, then agents no longer report their entire income initially
because they expect to be then taxed in a confiscatory fashion in the future:
there is tax avoidance in equilibrium. Further, not only do agents take exces-
sive risk on their investments, but they also distort their savings behaviour
so that their current consumption overreacts to life-income shocks.

Finally, we discuss a version of the model in which agents do not take
idiosyncratic bets, but rather continuously trade a single risky asset. We find
that the distribution of the now risky taxes collected by the planner reflects

4



that of the income distribution rather than the distribution of asset returns.
We also find that agents trade with positive feedback: The aggregate demand
for the risky asset increases with respect to its realized return.

Overall, our analysis suggests that, absent radical changes in interna-
tional coordination and drastic simplifications of the major tax codes, any
attempt at suddenly increasing tax pressure on the rich would yield limited
additional tax revenues, and spur excessive financial risk taking.

The paper is organized as follows. Section 1 studies optimal taxation
in the presence of a tax-avoidance friction. Section 2 adds the risk-shifting
friction and studies optimal taxation with and without commitment. Section
3 studies a multi-period extension of the model. Section 4 develops a version
of the model in which agents gamble by continuously trading a unique risky
asset. Section 5 discusses the relation of the paper to various strands of
existing research. Proofs are relegated to an appendix.

1 Economies of scale in tax avoidance and optimal
taxation

1.1 Baseline model

Consider a one-date economy populated by a continuum of agents with
unit mass. There is a single consumption good. The agents have identical
preferences represented by a utility over consumption u that is increasing and
strictly concave. Agents differ only with respect to their endowments of the
consumption good - their "incomes". The cumulative income distribution
F has support [0,+∞) and a finite mean:∫

wdF (w) < +∞.

We study the problem of a social planner who redistributes income in
order to maximize the utilitarian welfare of the population. Because agents
have identical concave preferences, the first-best policy clearly consists in
ensuring that each agent consumes the same amount, and that aggregate
consumption is equal to the aggregate endowment:

Proposition 1

In the first-best, each agent consumes
∫
wdF (w).

Proof. Jensen’s inequality.�
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We depart from this first-best, and assume that the planner faces the
following informational friction. Each agent privately observes his income.
An agent with income x may report any amount y ∈ [0, x] to the planner,
and conceal the residual x−y. This concealed income x−y can be converted
into g(x− y) units of secret consumption, where g is a continuous function
that satisfies:

0 ≤ g(z) ≤ z. (1)

This secret consumption adds up to the public one, which is the net trans-
fer that the agent receives after the social planner redistributes aggregate
reported income.

Under this general formulation, the friction facing the social planner
could be interpreted either as tax evasion or as tax avoidance. As we ex-
plained in the introduction, we believe, however, that evasion and avoidance
correspond to very distinct properties of the avoidance technology repre-
sented by g. In the case of evasion, which is an outright breach of tax law,
the technology g should be thought of as displaying diseconomies of scale.
In the case of tax avoidance, the technology g should feature economies of
scale, at least within some range, given in particular important fixed costs
of avoidance. Accordingly, we introduce economies of scale by positing that:

Assumption 1. The function g is superadditive. For all w, w′ ≥ 0

g
(
w + w′

)
≥ g(w) + g(w′). (2)

Notice that superadditivity and g ≥ 0 imply that g is increasing. One in-
terpretation of (2) is that a single affl uent agent avoids more effi ciently than
a group of agents with the same aggregate tax base, which seems natural.
The following lemma exhibits simple cases in which g is superadditive.

Lemma 2
i) Suppose that g is convex. Then g is superadditive.
ii) Suppose that converting non-reported income into secret consumption

requires spending a fixed cost k > 0. After this cost is sunk, x units of non-
reported income translate into f(x) units of secret consumption, where f is
an increasing concave function that satisfies (1). Suppose that for all w ≥ 0,

2f
(w

2

)
− f(w) ≤ k. (3)

Then g(w) = max {f(w)− k; 0} is superadditive.

Proof. See the appendix.�
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In point ii) of Lemma 2, the cost of avoidance corresponds to a textbook
cost function, with increasing marginal costs topping up a fixed setup cost.
Agents with an income below the fixed cost cannot profitably convert their
secret income into secret consumption. Condition (3) shows that superaddi-
tivity holds in this case provided the fixed cost of avoidance k is suffi ciently
important and the marginal cost of avoidance does not increase too sharply
with the tax base (f is not too concave).

We now solve the planner’s problem in the presence of this tax-avoidance
friction. In application of the revelation principle, one can write down the
planner’s problem using only direct mechanisms. A direct mechanism is a
pair of functions (r(.), v(.)) such that an individual with endowment w has
the incentive to report r(w) ∈ [0, w], and receives a net transfer v(r(w))
from the social planner after doing so. Notice that we rule out random
mechanisms. Proposition 7 establishes a suffi cient condition on u for this to
be without loss of generality.

The social planner solves the program (℘) :

max
r,v

∫ +∞

0
u (v(r(w)) + g (w − r(w))) dF (w) (4)

s.t.


∫ +∞

0 v(r(w))dF (w) ≤
∫ +∞

0 r(w)dF (w),
∀w,w′ ≥ 0 s.t. r(w′) ≤ w,

v(r(w)) + g (w − r(w)) ≥ v(r(w′)) + g (w − r(w′)) .
(5)

The first inequality in (5) is the resource constraint of the planner. The other
inequalities are incentive-compatibility constraints, ensuring that individu-
als report according to their types (which of course does not necessarily
imply that they report their entire income). We show that the solution to
this program (℘) is very simple when tax avoidance displays scale economies.

Proposition 3
Under Assumption 1, the solution to (℘) is attained with (r∗, v∗) defined

as {
r∗(w) = w,

v∗(w) = g (w) +
∫ +∞

0 (t− g(t)) dF (t)
. (6)

Proof. See the appendix.�
Proposition 3 states that there is no tax avoidance in equilibrium: agents

report their entire income. This result was first established in Grochulski
(2007). This is a direct consequence from the superadditivity of g. Any
incentive-compatible tax scheme that implies some avoidance can be re-
placed with a more effi cient one that does not entail any. To see this,
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suppose that a mechanism (r, v) implies
∫
r(w)dF (w) <

∫
wdF (w). Then

a scheme whereby an individual with income w reports w and receives
v(r(w)) + g(w − r(w)) + ε satisfies the resource constraint for ε > 0 suf-
ficiently small. Further, it is incentive-compatible:

v(r(w)) + g(w − r(w)) ≥ v(r(w′)) + g(w − r(w′)),
≥ v(r(w′)) + g(w′ − r(w′)) + g(w − w′).

The first inequality stems from the incentive-compatibility of (r, v), the sec-
ond one from the superadditivity of g. This second inequality means that
this new mechanism is also incentive-compatible. It is strictly preferable to
(r, v) because the income destruction induced by tax avoidance disappears.

Proposition 3 exhibits the most redistributive scheme among all "avoidance-
free" ones. It simply consists in making every agent indifferent between re-
porting his entire income or none of it. Scale economies imply that an agent
who is indifferent between reporting everything and reporting nothing also
prefers a full report to any partial report.

The broad message from Proposition 3 is that in the presence of scale
economies in tax avoidance, the overriding priority of the social planner is to
make sure that agents report any income at all. Scale economies leave him
with no other option but making agents indifferent between reporting their
entire income and none of it. We now show that this is a robust result, in
the sense that this overriding constraint also shapes the optimal tax scheme
under alternative modelling assumptions.

1.2 Alternative settings

This section studies the optimal tax scheme designed by the social planner
in modifications of the above baseline model. A reader interested in getting
directly at our main results may skip this Section 1.2, and move on directly
to Section 2.

1.2.1 Alternative planner’s objectives

The optimal tax scheme in Proposition 3 does not depend on the utility
function u, and the proof of the proposition only uses that u is increasing
and strictly concave. Thus the scheme (6) is optimal given any concave
objective:
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Corollary 4 Replace the planner’s objective (4) in (℘) with

max
r,v

∫ +∞

0
Ω [u (v(r(w)) + g (w − r(w)))] dF (w),

where Ω ◦ u is increasing, strictly concave. Then the optimal tax scheme is
given by (6).

Proof. See the appendix.�
This invariance result implies that the tax scheme given by (6) also

maximizes a Rawlsian criterion:

Corollary 5 Replace the planner’s objective (4) in (℘) with

max
r,v

inf
w
{v(r(w)) + g (w − r(w))} .

Then the optimal tax scheme is given by (6).

Proof. See the appendix.�
Notice that if g is convex, the function t → t − g(t) is concave. This

implies that if, other things equal, the income distribution F is riskier in
the sense of second-order stochastic dominance, then the constant in v∗,∫ +∞

0 (t− g(t)) dF (t), is smaller. Thus, more pre-tax inequality makes the
poorest relatively worse off in the presence of the tax-avoidance friction.

Tax capacity. The reason tax scheme (6) maximizes any concave ob-
jective is basically that the constant term in v∗,

∫ +∞
0 (t− g(t)) dF (t), is also

the tax capacity of the social planner. Namely, it is the maximal revenue
that a planner who does not redistribute can extract from the population.
To see this, consider the following program (℘′) :

max
r,τ

∫ +∞

0
τ (r(w)) dF (w) (7)

s.t.


∀w ≥ 0, τ (r(w)) ≤ r(w),
∀w,w′ ≥ 0 s.t. r(w′) ≤ w,

r(w)− τ (r(w)) + g (w − r(w)) ≥ r(w′)− τ (r(w′)) + g (w − r(w′)) .

This program formalizes (applying the revelation principle) the situation
in which a planner seeks to extract as many resources as possible from the
population for purposes that are outside the model. The function r(w)
describes the report of an agent with income w, while τ(r(w)) describes by
how much he is taxed. Notice that we impose that no agent be taxed beyond
his reported income, which is plausible and ensures that the program (℘′)
has a finite solution. We have
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Corollary 6 The solution to (℘′) is
∫ +∞

0 (t− g(t)) dF (t), and is attained
with (r∗, τ∗) defined as {

r∗(w) = w,
τ∗(w) = w − g (w)

. (8)

Therefore, optimal taxes are not strictly progressive.

Proof. See the appendix.�
The average tax rate

τ∗(w)

w
= 1− g (w)

w

can of course be constant if g is linear, but cannot be strictly increasing.
This would imply g strictly concave and thus strictly subadditive. If g is
strictly convex over some interval, then taxation is strictly regressive over
this income range. If

g(w) = max {f(w)− k; 0}

as in Lemma 2 ii), then taxation is progressive on each side of k, but the
average tax rate jumps downwards at k.

Overall, these three corollaries suggest that in the presence of scale
economies in avoidance, the same tax scheme given by (6) addresses both the
question of the optimal taxation - provided the objective is inequality-averse,
and that of the maximal feasible taxation. This tax scheme depends only
on pre-tax income distribution and on the avoidance technology. Pre-tax in-
come distribution affects only v∗(0), but not v∗ (w)− v∗ (0). This contrasts
with solutions to the standard Mirrlees problem, for which the optimal tax
scheme is typically more sensitive to the fine details of the model.

1.2.2 Random Taxation

It is well-known that a utilitarian planner may find it optimal to randomize
taxes (see Stiglitz, 1981, 1987). Such a randomization of tax schemes can
take place ex ante and/or ex post. Ex ante randomization means that the
planner randomly splits the population in several groups before they report
any income, and then subjects them to different tax schemes. This is a
concavification device that may be desirable when welfare is non-concave
in the total income raised by the planner. Ex post randomization means
that upon reporting r(w), an agent receives from the planner a random net
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income. In general, ex post randomization may make it easier to satisfy
incentive compatibility because an agent may report a higher income so as
to incur a lower disutility from this source of risk. The next proposition
exhibits a suffi cient condition under which randomization does not improve
upon the deterministic mechanisms studied thus far.

Proposition 7
Suppose that u′ exists and is weakly more concave than u. When ex

ante and ex post randomization are allowed, the tax scheme that maximizes
utilitarian welfare is still given by (6).

Proof. See the appendix.�
That u′ is more concave than u means that u′ ◦ u−1 is concave. This

condition is satisfied for example for utility functions that exhibit constant
or increasing absolute risk aversion. It is not satisfied when the agents
have strictly decreasing absolute risk aversion. These results mirror that
in Stiglitz (1981). In an environment with unobservable labor decisions,
he shows that randomization of taxes may be desirable in particular if the
marginal utility over consumption is suffi ciently convex.3 The rest of the
paper will focus on the case of CARA preferences, in which the restriction
to deterministic mechanisms is therefore without any loss of generality.

1.2.3 Alternative supports of income distribution

We assume that income distribution has support [0,+∞) in the baseline
model in order to simplify the notations and the exposition of some results.
This comes with no loss of generality, the only substantial part of this as-
sumption is that the support be connected. For example, if the income
distribution has support over [w,w], it is easy to check that the optimal tax
scheme in Proposition 3 simply becomes

r∗(w) = w,
v∗(w) = g (w − w) +

∫
[w,w] (t− g(t− w)) dF (t).

(9)

Notice that we do not impose any restriction on the c.d.f. F besides a
connected support and a finite mean.

3 in the sense that ∂3U
∂C3

be suffi ciently large.
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1.2.4 Exogenous expenditures

Another straightforward extension is the addition of some exogenously given
expenditures S that the social planner must cover with taxes. The optimal
tax scheme in Proposition 3 simply becomes

r∗(w) = w,

v∗(w) = g (w) +
∫ +∞

0 (t− g(t)) dF (t)− S.

Overall, this Section 1.2 suggests that the optimal tax scheme with scale
economies in tax avoidance presented in the baseline model is robust to a
number of alternative specifications. We now add to this setup a second
friction - secret risk shifting.

2 Economies of scale in tax avoidance, secret risk
shifting, and optimal taxation

We argued in the introduction that a distinctive feature of affl uent individu-
als is their access to a rich set of financial instruments that gives them a free
hand at selecting the risk profile of their pre-tax income. This section in-
troduces a second friction in our baseline model that formalizes this feature,
and studies its interplay with scale economies in tax avoidance.

2.1 Setup

As in the baseline model of the previous section, a social planner seeks to
maximize the utilitarian welfare of a continuum of agents with unit mass.
The economy now has two dates, 0 and 1. Preferences, endowments, and
the information structure are as follows.

Preferences. Agents value only date-1 consumption, over which they
have CARA utility u.

Endowments. Agents receive their entire endowment at date 0. The
cumulative income distribution F0 has support [0,+∞) and a finite mean.
Agents need to store their income from date 0 to date 1 in order to consume.
A risk-free storage technology with unit return is available. Agents may also
enter into risk shifting in the following sense. Each agent may add to this
risk-free return an idiosyncratic risky return. In this case, he has a free hand
at choosing the unit-mean distribution of this risky return. Formally, an
agent with initial income w0 can choose a date-1 income with any cumulative
distribution function with mean w0 and support included in [0,+∞).
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We assume that for each date-0 income level, an arbitrarily small measure
of agents only has access to the risk-free storage and cannot gamble this way.
This is a technical assumption meant to ensure that date-1 pre-tax income
distribution has full support over [0,+∞).4

Information. Agents privately observe their date-0 income. The social
planner does not observe their investment decisions, nor their resulting date-
1 individual incomes. As in the previous section, agents can convert x units
of concealed income into g(x) units of secret consumption, where g is a
continuous superadditive function that satisfies (1). The (exogenous) date-
0 income distribution, that we denote F0, is publicly observed. So is the
(endogenous) date-1 income distribution, that we denote F1.5

Thus, the social planner now faces two informational frictions. First,
agents can divert income and secretly consume as in the previous section.
Second, they can also secretly shift income risk. We model this risk-shifting
ability as the possibility to add fair lotteries with arbitrary distribution to
their income. This modelling choice has two advantages. First, excessive
risk taking is simply and clearly characterized in our model as the addition
of non-rewarded risk to a safe endowment by a risk-averse agent. Second,
this delivers sharp insights into the type of risk distributions that households
willing to shift risk demand. A number of other restrictive assumptions are
made in this setup. We will explain their roles and relax them in subsequent
sections. More precisely, Section 2.4.2 relaxes the assumption of a CARA
utility. Section 3 tackles the case in which agents value consumption at
several dates. Section 4 studies the situation in which agents take correlated
risks.

Before tackling such extensions, we solve for the social planner’s problem
in this baseline setup. Section 2.2 first tackles the case in which the social
planner cannot commit to a tax scheme, but instead redistributes ex post
optimally at date 1, after date-1 incomes are realized. Section 2.3 then
tackles the case in which the planner can commit to a scheme. It may
seem unusual to first solve the model with the additional friction of limited
commitment, and to then remove it. It will be apparent that we do so
because the optimal tax scheme under full commitment actually derives
from that without commitment.

4Alternatively, one could assume that agents only have access to distributions with full
support over [0,+∞) when shifting risk. An agent interested in a discrete distribution
could approximate it arbitrarily well with such a continuous one.

5We only need that the date-0 income distribution be common knowledge. Assuming
that so is F1 slightly simplifies the exposition.
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2.2 Optimal taxation without commitment

In this section, we suppose that the social planner redistributes in an ex
post optimal fashion at date 1, after agents have made their investment
decision and received their date-1 income. More precisely, the timeline of
this economy is as follows. At date 0, each of the agents decides on the
distribution of the mean-preserving spread that he wishes to add to his
date-0 endowment. He may of course also prefer to store at the risk-free
rate. At date 1, agents receive their date-1 incomes. The resulting ex post
income distribution F1 is publicly observed. At this stage, the social planner
announces a taxation mechanism (r, v) so as to maximize utilitarian welfare.

An equilibrium in this economy consists in an ex post income distribution
F1, a date-1 tax scheme (r∗∗, v∗∗), and date-0 investment decisions such that:

• The tax scheme (r∗∗, v∗∗) solves the program (℘) described by (4) and
(5) for an income distribution F = F1.

• Each agent makes a date-0 investment decision that maximizes his
date-1 expected utility given his initial income and his beliefs about
F1 and (r∗∗, v∗∗).

• The distribution F1 correctly aggregates the impact of these individual
investment decisions on the initial income distribution F0.

• Agents have correct beliefs about F1 and (r∗∗, v∗∗).

We now characterize such equilibria. Notice first that since the planner
maximizes ex post social welfare, Proposition 3 applies at date 1, and

Lemma 8 Upon observing F1, the social planner sets{
r∗∗(w) = w,

v∗∗(w) = g (w) +
∫ +∞

0 (t− g(t)) dF1(t)
. (10)

Proof. Discussion above.�
When facing his investment decision at date 0 and forming beliefs about

F1, an agent with initial income w0 expects his date-1 consumption to be
the random variable v∗∗ (w̃1), where w̃1 are his possibly random proceeds
from investment and v∗∗ is defined in (10). Thus he optimally chooses
the distribution of w̃1 that maximizes his expected utility subject to the
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constraint that he expects to earn his initial endowment w0 before taxes.
Formally, this agent solves the following problem:

V (w0, F1) = max
G∈Γ

∫ +∞

0
u

(
g (w) +

∫ +∞

0
(t− g(t)) dF1(t)

)
dG(w),(11)

s. t.

∫ +∞

0
wdG(w) = w0.

where Γ is the set of cumulative distribution functions with support included
in [0,+∞). CARA preferences imply that the value function V (w0, F1) of
this program satisfies

V (w0, F1) = exp

(
−α

∫ +∞

0
(t− g(t)) dF1(t)

)
W (w0), (12)

where we adopt the convention u(x) = −e−αx, and W (w0) is the value
function of the program below that depends only on w0:

W (w0) = max
G∈Γ

∫ +∞

0
u(g(w))dG(w), (13)

s. t.

∫ +∞

0
wdG(w) = w0.

Thus, CARA preferences imply that the agent’s beliefs about F1 do
not affect his investment choice. The reason is simply that F1 only affects
the constant term in v∗∗. The value of this constant has no impact on the
attitude of a CARA agent towards the riskiness of his date-1 consumption.
All that is left to complete this characterization is to solve for (13) for all
w0 ≥ 0. To do so, we introduce the concavification of the function u ◦ g, and
denote it u ◦ g. That is, the function u ◦ g is the smallest concave function
such that for all w ≥ 0,

u ◦ g(x) ≥ u (g (x)) .

The function u ◦ g exists and is unique (see, e.g., Aumann and Perles, 1965).

Lemma 9
We have

W (w0) = u ◦ g (w0) .

If u ◦ g (w0) = u (g (w0)), then the agent stores at the risk-free rate.
If u ◦ g (w0) > u (g (w0)), then the agent takes additional risk. He may

be indifferent among several distributions. In this case, the least risky one
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in the sense of second-order stochastic dominance is the binary distribution
with support {w (w0) ;w (w0)} , where{

w (w0) = sup {w ≤ w0 s.t.u ◦ g (w) = u (g (w)) }
w (w0) = inf {w ≥ w0 s.t.u ◦ g (w) = u (g (w)) } . (14)

Proof. See the appendix.�
Lemma 9 formalizes that agents use lotteries in order to concavify their

date-1 utility when the tax scheme given by (10) implies that their utility
may be non concave in their pre-tax income.

A simple example

It is useful to illustrate this result in the simple particular case in which the
tax-avoidance technology g is piecewise linear with a convex kink. Suppose
that

g(x) = (1− λ)x+ 1{x≥c}∆λ (x− c) . (15)

This corresponds to the case in which two tax-avoidance technologies are
available. The first one dissipates a fixed fraction λ ∈ (0, 1) of each diverted
unit of income. The second one wastes only λ − ∆λ ∈ (0, λ) out of each
diverted income unit, but comes at a fixed cost c∆λ > 0. An agent chooses
the latter if and only if his date-1 income is larger than c. Figure 1 displays
in this particular case the functions u ◦ g and u ◦ g.

Figure 1 here.

The functions u ◦ g and its concavification coincide over two intervals [0, w]
and [w,+∞), where w < c < w.6 The concavification u ◦ g is strictly above
u◦g over (w,w), where it is equal to the chord linking the points (w, u(g(w))
and (w, u(g(w)). This chord is tangent to u ◦ g at these two points. From
Lemma 9, any agent with an initial income w0 ∈ [0, w] ∪ [w,+∞) stores at
the risk-free rate. If w0 ∈ (w,w), then the agent shifts risk and invests with
a binary risky return so as to obtain a date-1 income equal to w with prob-
ability w−w0

w−w or w with probability w0−w
w−w . The date-1 income distribution

F1 is thus riskier than F0 in the sense of second-order stochastic dominance
because the mass of F0 between w and w is split into two atoms of F1, in w
(with mass

∫
(w,w)

w−w
w−wdF0(w)) and w (with mass

∫
(w,w)

w−w
w−wdF0(w)). This

fully characterizes the equilibrium in this particular case.
As is obvious in this simple example, the distribution of the risk taken by

risk-shifting agents depends on their initial income. When they are relatively
6 It is possible that w = 0.
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"poor", so that w0 is on the right neighborhood of w, they purchase payoffs
that are negative and small in absolute value with a large probability, and
large and positive with a small probability - like a lottery ticket. Conversely,
when income is in the left neighborhood of w, the investors favor trades that
pay off a small excess return most of the time and generate rare, large losses.
These risk-profiles, labelled by Rajan (2010) as "fake alpha" strategies, are
produced by collecting a fair premium for exposure to a large disaster risk.
The profile of F0 thus determines aggregate risk taking. As the tail of F0

becomes fatter, the demand for fake-alpha strategies increases.

Equilibrium in the general case

With a general function g, there are two additional technical diffi culties.
Figure 2 illustrates them.

Figure 2 here.

First, the set of income levels for which u ◦ g < u ◦ g is not neces-
sarily a single interval. Thus, unlike in the simple example, the support
{w (w0) ;w (w0)} of the lottery associated to an initial income level w0 may
depend on w0, as stated in Lemma 9.

Second, it is possible to construct cases in which, unlike in the simple
example above, the lottery that solves (13) for a given income level w0 is
no longer necessarily unique. Thus F1 is not uniquely defined, and nor
is the equilibrium. The lottery that Lemma 9 singles out in this case is
the least risky in the sense of second-order stochastic dominance among all
those that solve (13). In what follows, we assume that when indifferent
among lotteries, agents pick this least risky lottery. We believe that this is
a reasonable selection criterion.

The next proposition summarizes the equilibrium characterization above.
In the remainder of the paper, we denote ρ̃(w) the equilibrium lottery for
an agent with initial income w defined in Lemma 9. That is, ρ̃(w) = w if
the agent decides to store at the risk-free rate, and ρ̃(w) is the least risky
lottery defined in Lemma 9 otherwise. By definition, for all w ≥ 0,

E [u ◦ g (ρ̃(w))] = u ◦ g(w).

Proposition 10
Suppose that risk-shifting agents choose the least risky lottery ρ̃(w) among

those that deliver the same expected utility. Then the equilibrium is such that
an agent who receives an initial income w obtains a date-1 pre-tax income
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equal to ρ̃(w). His date-1 net income is

v∗∗ (ρ̃(w)) = g(ρ̃(w)) + v∗∗ (0) , (16)

with

v∗∗ (0) =

∫ +∞

0
(t− g(t)) dF0(t)−

∫ +∞

0
(E [g (ρ̃(t))]− g(t)) dF0(t). (17)

Proof. See above.�
Proposition 10 establishes a theoretical link between tax avoidance, ex-

cessive risk taking, and the rise of inequality at the top. Absent any commit-
ment power of the tax authority, increasing returns to tax avoidance create
a demand for excessive risk taking, which in turn makes the ex post pre-tax
income distribution more diffuse. It is interesting to study how the addi-
tion of the risk-shifting friction to the avoidance problem affects utilitarian
welfare.

Corollary 11
i) Utilitarian welfare is strictly lower in the presence of risk shifting than

without it if and only if u ◦ g 6= u ◦ g.
ii) If u ◦ g 6= u ◦ g, it may be that some agents are better off in the

presence of risk shifting than without it. It may also be that every single
agent is worse off in the presence of risk shifting.

Proof. See the appendix.�
The first point states that risk shifting matters if and only if u ◦ g is not

concave (otherwise ρ̃(w) = w everywhere), and reduces utilitarian welfare
in this case. It relates to Proposition 7: if risk shifting was desirable, the
planner would implement himself the ex post randomization ρ̃(w) in the
optimal scheme absent the risk-shifting friction.

The second point may be understood as follows. Each given agent ben-
efits from risk shifting since the variable component of his net income is
larger than absent risk taking. On the other hand, risk shifting by the other
agents creates negative externalities for him since the constant part of the
tax scheme v∗∗ (0) is smaller than absent risk shifting. The difference in
constant terms is −

∫ +∞
0 (E [g (ρ̃(t))]− g(t)) dF0(t).7 Point ii) in Corollary

11 states that the negative impact of risk shifting on the constant term may
or may not overcome the positive one on the variable term for all agents
depending on parameter values. Essentially, if the mass of agents who do

7 Inequality (18) shows that this difference is negative.
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shift risk in equilibrium is suffi ciently small, then these agents are better
off than absent the risk shifting friction. Every agent is worse off in the
presence of risk shifting in the polar case in which a large fraction of the
population takes excessive risk in equilibrium.

This second point has interesting potential political-economy implica-
tions, as it suggests that for some parameter values, a fraction of the popu-
lation would strongly oppose a ban of risk shifting, which one could broadly
interpret as a tighter prudential regulation of financial institutions.

2.3 Optimal taxation with commitment

We now consider the situation in which the planner can announce a tax
scheme at date 0 and commit to it at date 1. More precisely, the timing
is as follows. The planner first announces a date-1 tax scheme (r∗∗∗, v∗∗∗).
Then agents make their investment decisions. After date-1 incomes are
realized, the tax scheme (r∗∗∗, v∗∗∗) is enforced: agents make their reports
and the planner redistributes as announced. We have

Proposition 12
The planner sets the tax scheme{

r∗∗∗ (w) = w
v∗∗∗(w) = u−1 ◦ u ◦ g(w) + v∗∗∗(0)

,

with

v∗∗∗(0) =

∫ +∞

0
(t− g(t)) dF0(t)−

∫ +∞

0

(
u−1 ◦ u ◦ g(t)− g(t)

)
dF0(t).

There is no risk shifting in equilibrium, so that F1 = F0.
If u ◦ g 6= u ◦ g, utilitarian welfare is strictly smaller than absent risk

shifting and strictly larger than absent commitment.

Proof. See the appendix.�
This optimal scheme simply consists in having the planner committing

to a tax scheme that generates concave expected utility over pre-tax income,
instead of letting agents concavify themselves by means of risk shifting. This
requires commitment power as soon as u ◦ g 6= u ◦ g because this requires
the enforcement of an ex post ineffi cient tax scheme.

The gains from not having agents concavifying their utility themselves
is that the date-1 income distribution does not get more diffuse as a result,
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which raises tax capacity, thereby generating a higher constant term in v∗∗∗

than in v∗∗. We have indeed for all w ≥ 0:

u ◦ v∗∗∗(w)

E [u(v∗∗(ρ̃(w)))]
= eα(v∗∗(0)−v∗∗∗(0)) < 1

if u ◦ g 6= u ◦ g, because Jensen inequality implies∫ +∞

0
E [g (ρ̃(t))] dF0 (t) >

∫ +∞

0
u−1 (E [u ◦ g (ρ̃(t))]) dF0 (t) >

∫ +∞

0
g(t)dF0(t).

(18)
Even though risk shifting does not occur in equilibrium, commitment

does not fully eliminate the costs from the risk-shifting friction, however.
The planner must still leave rents to agents for whom the risk-shifting option
is valuable. Utilitarian welfare under v∗∗∗ is still strictly lower than absent
the risk-shifting friction.

2.4 Extensions

2.4.1 Date-0 income reports

In order to make the situations with and without commitment easier to
compare, Section 2.3 studies mechanisms whereby income reports take place
at date 1 as in the case without commitment. If the planner can commit,
however, it must be weakly dominant that he asks for income reports at date
0, collects the reported incomes, and commits to date-1 net transfers based
on such reports. With such date-0 reports, agents must first decide on how
much income to conceal and then on how to gamble with it. With date-1
reports, agents first gamble with their entire income, and then decide on how
much to conceal conditionnally on observing the outcome of the gamble.
This latter situation obviously gives agents more room for opportunistic
behaviour than the one with date-0 reports.8 The following lemma shows
that the introduction of such date-0 income reports does actually not strictly
improve welfare.

Lemma 13
Suppose that the planner asks for reports at date 0. The optimal scheme

is still (r∗∗∗, v∗∗∗) and there is still no risk shifting in equilibrium.

8To see this, notice that an agent can always gamble with a fraction w − w′ of his
income w, store w′ at the risk-free rate and report w′ at date 1, thereby replicating a
date-0 report of w′.
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Proof. See the Appendix.�
This result is essentially driven by the superadditivity of g. The binding

constraint at any income level is that agents report any income at all, in
which case the ordering of the gambling and reporting decisions is irrelevant.

2.4.2 Non CARA utility

The CARA assumption greatly simplifies equilibrium characterization be-
cause, as formalized in (12), the attitude of an agent towards risk is not
affected by his beliefs about the date-1 income distribution F1. In other
words, one’s investment decision does not depend on others’ investment
decisions. This is no longer the case in the presence of varying absolute
risk-aversion. Equilibrium characterization in this case requires that one
characterizes optimal individual risk-taking decisions for given beliefs about
F1, then derives how a given collection of individual risk-taking decisions ag-
gregate into a date-1 income distribution F1, and finally finds a fixed point
for this system. We solve this problem here in the particular example stud-
ied above in which g is the piecewise linear function given by (15). Within
this example, we solve for the equilibrium without commitment, only re-
laxing the assumption that u is CARA, and assuming instead that it is an
increasing and strictly concave function such that

u(y)

y
→

y→+∞
0. (19)

In this case, equation (12) no longer holds, and (11) does not simplify
into (13). Yet, for any given ex post distribution F1, it is still the case that
the tax scheme is given by (10). Thus it must be that u◦v∗∗ has the generic
shape depicted in Figure 2: piecewise concave with a unique convex kink.
Thus, for a given arbitrary ex post income distribution F1, there exists two
thresholds wF1 ≤ c ≤ wF1 such that agents store at the risk-free rate when
their initial income w0 /∈

[
wF1 , wF1

]
, and invest in mean-preserving binary

lotteries with support
{
wF1 ;wF1

}
otherwise.

But this means in turn that possible date-1 income distributions are
characterized by two numbers W ≤ c ≤W such that:

- F1 coincides with F0 over [0,W ) and
(
W,+∞

)
,

- The mass of F0 between W and W is split into two atoms of F1, in W
and W , while preserving the mean.

We denote F
(W,W)
1 such a date-1 distribution built this way from F0

and a given pair
(
W,W

)
. Thus we have introduced two mappings. One

21



maps a pair
(
W,W

)
into the transformation of F0 denoted F

(W,W)
1 . The

other maps a distribution F1 into a pair
(
wF1 , wF1

)
. Any fixed point of this

system defines an equilibrium. In other words, any pair (x, y) such that

(x, y) =
(
wF

(x,y)
1 , wF

(x,y)
1

)
(20)

defines an equilibrium. Standard compacity and continuity arguments en-
sure that the fixed-point problem (20) has a solution, so that there exists at
least one equilibrium. Equilibrium uniqueness is an open question.

2.4.3 Alternative planner’s objectives

It is easy to see that it is still the case in the presence of risk shifting that
the constants v∗∗(0) and v∗∗∗(0) do correspond to the maximal tax capacity
of the planner. That is, solving the program (℘′) described in (7) in the
presence of risk shifting leads to an ex post tax capacity v∗∗(0) and an ex
ante tax capacity (assuming commitment power) v∗∗∗(0). More generally,
the tax schemes v∗∗ and v∗∗∗ are the optimal ones under the alternative
planner’s objectives studied in Section 1.2.1 in the presence of risk shifting,
in the respective cases of limited and full commitment.

3 Dynamics

The assumption that consumption takes place at a single date is meant to
focus on risk-taking decisions, and to abstract from consumption smoothing.
This section relaxes this assumption. More precisely, we leave the setup de-
scribed in section 2.1 unchanged, except for agents’preferences. We suppose
in this section that they are of the form

E [u(c0) + u(c1)] ,

where u is CARA, and c0 and c1 are respective consumptions at dates 0
and 1. We let u(x) = −e−αx. We suppose that agents privately learn the
value of their entire life income w at date 0. This life income has c.d.f. F
within the population. Agents can secretly borrow and lend at the zero
risk-free rate. They can also take arbitrary positions in assets with zero
expected return and arbitrary risk profiles. Secret consumption is subject
to the same technology as before: at each date, concealed income x can be
converted into g(x) units of consumption.

In sum, we only add the ingredient that agents value date-0 consumption.
We adopt again the standpoint of a social planner seeking to maximize
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utilitarian welfare. We suppose that the planner can borrow and store at
the risk-free rate. He thus faces only an intertemporal budget constraint.

Note that we focus on the case in which agents face no income uncer-
tainty. This way, we abstract from insurance concerns. Consistent with the
rest of the paper, this enables us to study the impact of redistribution with
frictions on an economy that is trivially Pareto effi cient at the outset.

We do three things in this section. First, we study the optimal consump-
tion and saving choices of an agent who hides all of his income. Second, we
solve for the problem facing a social planner who can commit to a long-term
redistribution tax scheme. Last, we study the case in which the planner
lacks commitment.

To start, we compute the utility that an agent who secretly consumes his
entire endowment can derive. Suppose that an agent with an endowment
w seeks to consume it entirely secretly, and that he does not receive any
transfer from the social planner. This agent now faces two decisions. First,
he decides on the fraction of his total income w that he saves for date-1
consumption. Second he sets the risk profile of his saving vehicle. From the
previous sections, we know that if he saves w1 for future consumption, the
agent will optimally invest so as to generate the binary lottery ρ̃ (w1) with
mean w1 and realizations {w (w1) ;w (w1)} such that

E [u ◦ g (ρ̃(w1))] = u ◦ g(w1).

This means that the agent’s decision boils down to

max
w1

u ◦ g (w − w1) + u ◦ g (w1) . (21)

This is a non-convex program which yet admits a simple solution:

Lemma 14 The agent reaches utility

2u ◦ g
(w

2

)
as follows:

If u ◦ g
(
w
2

)
= u ◦ g

(
w
2

)
, then the agent invests w

2 at the risk-free rate,
and consumes the rest at date 0.

Otherwise, if w
(
w
2

)
≤ w

2 ≤
w(w2 )+w(w2 )

2 , then the agent consumes w
(
w
2

)
at date 0, and invests the residual w − w

(
w
2

)
in a fair lottery with support{

w
(
w
2

)
;w
(
w
2

)}
. If

w(w2 )+w(w2 )
2 < w

2 ≤ w
(
w
2

)
, then the agent consumes

w
(
w
2

)
at date 0, and invests the residual w − w

(
w
2

)
in a fair lottery with

support
{
w
(
w
2

)
;w
(
w
2

)}
.
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Proof. See the appendix.�
It is instructive to discuss Lemma 14 in the particular case in which g

is piecewise linear, given by (15). In this case, u ◦ g coincides with u ◦ g
outside the interval [w,w] over which it is a straight line. Lemma 14 shows
that an agent such that w ∈ (2w, 2w) uses both risk shifting and the shifting
of consumption over time in order to concavify his utility. As in the previous
sections, risk shifting serves to concavify utility over date-1 consumption. In
addition, shifting income over time in a distorted fashion serves to equate
marginal utilities over pre-tax income at dates 0 and 1. If w ∈ (2w,w + w),
the agent consumes only w < w

2 at date 0, and thus over-saves compared
with a standard situation of concave preferences. If w ∈ (w + w, 2w), then
conversely the agent consumes w > w

2 at date 0, and thus under-saves in
comparison with a standard situation with concave preferences. Risk shift-
ing makes date-1 pre-tax income distribution more diffuse - with atoms in
w and w, while the distorted saving behaviour also generates atoms in w
and w in the date-0 pre-tax income distribution. Notice that this cross-
sectional savings patterns can be interpreted as an overreaction of current
consumption to life-income shocks, since agents switch from over-saving to
under-saving as their life-income increases and crosses w + w.

Lemma 14 is useful in the analysis for two reasons: First, it generates
the agent’s outside option from secret consumption 2u ◦ g

(
w
2

)
which plays

a key role in solving the case in which the planner can commit. Second, we
will show that absent commitment, agents do not report their entire income
and do secretly consume in equilibrium. The insight from Lemma 14 will
help derive their consumption and savings profile in this case. We first study
the case in which the planner can fully commit to a long-term scheme.

3.1 The planner can commit

Suppose the planner can commit to date-1 actions. In this case, a direct
mechanism can be described by the functions (r, v0, v1, σ̃, σ) s.t. an agent
with life income w reports r(w) ∈ [0, w] at date 0, and receives net con-
sumption vi(r(w)) from the planner at date i ∈ {0; 1} . The function σ(w)
describes the share of concealed income w − r(w) that the agent stores for
secret date-1 consumption, using a fair lottery σ̃(w) with mean σ(w). The
residual w−r(w)−σ(w) may be secretly consumed at date 0. Formally, the
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planner solves the program
(
℘D
)

:

max
(r,v0,v1,σ̃,σ)

∫ +∞

0

[
u (v0(r(w)) + g (w − r(w)− σ(w)))

+E [u (v1(r(w)) + g (σ̃(w)))]

]
dF (w) (22)

s.t.



∫ +∞
0 (v0(r(w)) + v1(r(w))) dF (w) ≤

∫ +∞
0 r(w)dF (w),[

u (v0(r(w)) + g (w − r(w)− σ(w)))
+E [u (v1(r(w)) + g (σ̃(w)))]

]
= max

w′,s,s̃

{
u (v0(r(w′)) + g (w − r(w′)− s))

+E [u (v1(r(w′)) + g (s̃))]

}
s.t. 0 ≤ r(w′) ≤ w,
0 ≤ s ≤ w − r(w′),

E [s̃] = s.

(23)

We denote s̃ a generic random variable with support included in [0,+∞).
The program

(
℘D
)
simply states that the mechanism must satisfy a bud-

get constraint (this is the first constraint), and that it must be incentive-
compatible (second constraint) given that agents now have three degrees of
freedom: they can choose a report, decide on how much of their concealed
endowment to save, and on the risk profile of their savings.9

Notice that with commitment, the mechanisms studied here whereby
agents report their entire income at date 0 must be weakly better than
more realistic mechanisms whereby agents report their disposable income at
date 0 (the income that they do not store) and then their disposable income
at date 1. The reasoning is the same as that in Section 2.4.1.10 We have:

Proposition 15
The solution to program

(
℘D
)
is attained with

(
rD, vD, vD

)
defined as{

rD(w) = w,
vD(w) = vD(0) + u−1 ◦ u ◦ g

(
w
2

) ,

where

vD(0) =

∫ +∞

0

(
t

2
− u−1 ◦ u ◦ g

(
t

2

))
dF (t).

Agents report their entire life income. This delivers an agent with life-income
w an expected utility

−2e−α(
∫+∞
0 ( t2−u

−1◦u◦g( t2))dF (t))u ◦ g
(w

2

)
.

9Notice that we consider only deterministic mechanisms. It is for brevity, and without
loss of generality for exactly the same reasons as in the static case.
10 It is possible to show that, as in Lemma 13, a full date-0 report does not strictly

improve upon mechanisms with reports at dates 0 and 1.
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Proof. See the appendix.�
Proposition 15 essentially shows that the insights from the static model

extend to the dynamic case when the planner can commit. First, the optimal
redistribution consists in making every agent indifferent between reporting
his entire income or none of it. Second, the planner finds it preferable to
concavify utilities over pre-tax income rather than let agents do it themselves
through risk shifting and distorted savings in the way described in Lemma
14. By concavifying himself, not only does the planner reduce the dispersion
of pre-tax income in the cross-section at date 1 (by eliminating excessive risk
taking), but he also eliminates under and over savings at date 0, and thus
smoothes income over time compared with the case in which agents secretly
consume.

3.2 The planner cannot commit

Suppose now that the planner cannot commit at date 0 to date-1 actions. At
date 1, the planner maximizes date-1 utilitarian welfare given his information
about each agent’s endowment and his budget constraint. Interestingly, the
no-avoidance result that held in all the cases considered thus far breaks
down in this case: there must be secret consumption in equilibrium. In this
section, we make the following mild technical assumption:

Assumption 2. The function g has left and right derivatives that are
uniformly bounded over [0,+∞) .

The functions described in Lemma 2 satisfy this condition.

Proposition 16 Suppose g 6= 0. An optimal mechanism must be such that
date-0 income reports have an upper bound, and that secret consumption at
date 0 grows without bound and tends to w

2 as w → +∞.

Proof. See the appendix.�
This result is essentially a form of the ratchet effect in dynamic agency

problems without commitment (see, e.g., Laffont and Tirole, 1988). The
intuition is the following. It is very costly for an agent to report a sizeable
fraction of his total income at date 0 because this raises the planner’s beliefs
about this agent’s pre-tax income at date 1. The planner taxes in an ex
post optimal fashion at date 1. Therefore, if he infers from the date-0 report
how much an agent has saved for date 1, he cannot commit not to extract
most of it (net of a date-1 minimum payment). This implies that date-1 net
consumption has an upper bound when date-0 reports are unbounded. This
cannot be incentive-compatible, as a suffi ciently wealthy agent will always
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prefer to report no income at all initially, so as to be able to freely smooth
consumption across dates.

Interestingly, the risk-shifting friction can ease the revelation of income
at date 0. Suppose that g is such that in equilibrium, an agent with income
w0 gambles between dates 0 and 1 and that his low payoff is 0. Then,
revealing his entire income w0 at date 0 can be an equilibrium strategy
because it comes at no cost to the agent at date 1. The planner cannot rule
out that the agent has no income at date 1 given that 0 is in the support of
his gamble, and thus he cannot exploit the date-0 report at date 1. But this
potentially positive role of gambling is irrelevant at high income levels at
which gambles have very small supports because u′ decreases exponentially
while g has bounded derivatives.

Notice that absent commitment, since there is secret consumption, the
behaviour described in Lemma 14, featuring distorted savings and excessive
risk taking, must occur in equilibrium if agents with a suffi ciently large
income w have a nonconcave utility in w

2 .
The no-avoidance property was instrumental in generating simple opti-

mal schemes in the cases previously studied. Absent this property here, we
are unable to characterize the optimal scheme in general. The next result
studies an interesting limiting case in which agents report no income at all at
date 0. In this case, the optimal scheme can be characterized. We derive the
optimal scheme in the limiting case in which agents are infinitely risk-averse.
This corresponds for example to letting the index of absolute risk aversion
tend to infinity in the CARA case. Infinite risk-aversion is the limiting case
in which agents care only about the worst outcome across dates and states.
In this case, a utilitarian planner maximizes the lowest consumption level
across agents and dates.

Lemma 17 Suppose that agents are infinitely risk-averse and that the left
and right derivatives of g are larger than 1

2 . Then the optimal scheme is such
that all agents report a zero-income at date 0. They secretly consume half
of their income at date 0 and store the other half at the risk-free rate. At
date 1, they entirely report the proceeds. The net transfers at dates 0 and 1,
v0 and v1, are

v0(w) = K,

v1(w1) = K + g(w1),

where w1 is the date-1 report and K = 1
2

∫ (
w
2 − g(w2 )

)
dF (w).

Proof. See the appendix.�
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In other words, the planner can only collect taxes at date 1 on half the
aggregate income. He splits the proceeds into two equal constant terms
at dates 0 and 1. The intuition for this result is the following. Recall
the intuition behind Proposition 16 that agents are reluctant to reveal how
affl uent they are at date 0 because the planner cannot commit not to tax
them in a confiscatory fashion at date 1. One way the report of any income
at all at date 0 can be made incentive-compatible is if, unlike in the full
commitment case, the minimum net consumption level at date 1 is larger
than that at date 0. In this case, agents do not need to save in order
to smooth consumption provided their total income is not too large, and
thus are not worried about future confiscatory taxes. But this solution is
not desirable when risk-aversion is infinite and the avoidance technology is
suffi ciently effi cient (i.e., the derivatives of g are larger than 1

2) because the
required difference in fixed payments at dates 0 and 1 must be large in this
case. This makes the date-0 minimum consumption level - the one that
matters to the social planner - too low.

Finally, the reader may wonder whether it would conversely be preferable
to give a lower minimum consumption level at date 1 than at date 0 when
there are no initial reports. This would induce agents to save more, and thus
would increase the date-1 tax collection on realized savings. This is actually
not the case when the derivatives of g are larger than 1

2 . If avoidance is too
effi cient, the net effect of an increasing gap between minimum levels and of
an increase in their sum due to higher tax collection is a decrease in the
date-1 minimum level - which is the one the planner cares for since it is
lower than the date-0 minimum consumption. With less effi cient avoidance
technologies, we conjecture that the planner may find it worthwhile to induce
high savings with unequal minimum consumption across dates.

4 Systematic risk taking

This section develops a version of the model in which agents do not take
idiosyncratic risks. It studies the polar case in which all agents share access
to a unique source of risk. We modify the model set up in Section 2.1 in two
ways.

First, agents store their income from date 0 to date 1 by continuously
trading two assets over the time interval [0, 1]. The first asset has a constant
unit price at all date t ∈ [0, 1]. The second one is a risky asset whose price
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process (Pt)t∈[0,1] obeys {
P0 = 1

dPt
Pt

= σWt
,

where σ > 0 and Wt is a standard Wiener process. This asset pays no divi-
dend, and its price fluctuations are the only source of risk in this economy.
These available assets correspond to a version of the Black-Scholes (1973)
model with a zero risk-free rate and a zero-return on the risky asset.

Second, we do not assume that the social planner seeks to maximize
utilitarian welfare. We suppose instead that he seeks to maximize the taxes
that he collects from the population, as described in Section 1.2.1. We
motivate this assumption below.

For expositional brevity only, we assume that g is piecewise linear, given
by (15). We first solve the model in the case in which the planner taxes in
an ex post optimal fashion at date 1. Then we derive the full commitment
case. Before proceeding, we collect some elementary properties of binary
options in the Black-Scholes model that will prove useful.

4.1 Replicating binary options

A cash-or-nothing call of maturity 1 with strike K is a derivative security
that pays off 1 if P1, the price of risky asset at date 1, is above K, and pays
off 0 otherwise. Any date-1 binary lottery can be viewed as the payoff of
a portfolio invested in the risk-free asset and in a cash-or-nothing call with
the appropriate strike. Denoting Φ and ϕ the c.d.f. and p.d.f. of a standard
normal variable, we have

Lemma 18
The payoff of a cash-or-nothing call of maturity 1 with strike K can be

replicated with a dynamic self-financed strategy that consists in continuously
trading the risky and risk-free assets between t = 0 and t = 1. The initial
total amount that needs to be invested to replicate the call is:

Φ

(
− lnK

σ
− σ

2

)
,

which is also the probability that the call pays off 1 at date 1. The number of
units of the risky security that must be held at date t ∈ [0, 1] as part of the
replicating strategy is

q(K,Pt,t) =
1

σ
√

1− tPt
ϕ

(
1

σ
√

1− t
ln
Pt
K
− σ

2

√
1− t

)
. (24)
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Proof. See the appendix.�
It is easy to see from (24) that the replicating strategy consists in holding

a number of shares q(K,Pt,t) that is non-monotonic in Pt. These textbook
results on option replication are interesting in our context. They show that
the abstract binary lotteries considered in the rest of the paper could be
viewed more concretely as the resulting payoffs from continuous trading
strategies with time-varying risk exposures on assets with idiosyncratic risk.

4.2 Tax capacity without commitment

Suppose that the social planner solves at date 1 the program (℘′) described
in (7) after the date-1 income distribution is realized. From Corollary 6, the
optimal tax scheme does not depend on this date-1 distribution. It is simply
such that each agent fully reports his date-income w1 and is left with g(w1).
Thus, each agent trades between date 0 and date 1 so that the distribution
of his date-1 income viewed from date 0 solves the program (13). We know
from Lemma 9 that there exists w < c < w such that an agent with a date-0
income w ∈ [0, w] ∪ [w,+∞) finds it optimal to store at the risk-free rate.
If the initial income w ∈ (w,w), then the agent would like to receive a fair
binary payoffwith support {w;w} at date 1. This agent would like to invest
w in the risk-free asset, and the residual w−w in w−w units of an asset that
pays off 1 with probability w−w

w−w and 0 otherwise. Lemma 18 shows that this
agent can readily replicate this asset. This yields the following outcome.

Proposition 19
An agent with initial income w /∈ (w,w) invests at the risk-free rate. An

agent with initial income w ∈ (w,w) invests w in the risk-free asset, and
with the residual replicates a cash-or-nothing call with strike

K (w) = e
−σΦ−1

(
w−w
w−w

)
−σ

2

2 . (25)

As a result, the aggregate demand for the risky asset at date t is

(w − w) e
σ2t
2
−σWt

σ
√

1− t

∫ w

w
ϕ

Wt + Φ−1
(
w−w
w−w

)
√

1− t

 dF0(w). (26)

The date-1 taxes collected by the planner are of the form

T − τF0 (w − (w − w) Φ (W1)) , (27)
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where Φ (W1) has by construction a uniform distribution over (0, 1) viewed
from date 0, and

T =

∫
[0,w]∪[w,+∞)

(t− g(t)) dF0(t) + (w − g (w))F0 (w)− (w − g (w))F0 (w) ,

τ = (w − w + g (w)− g (w)) .

Proof. See the appendix.�
Proposition 19 yields two interesting insights. First, the date-1 revenues

of the planner are not surprisingly random since agents gain exposure to a
systematic source of risk. More interestingly, the consequence from dynamic
replication is that the distribution of these revenues is very different from
that of the return on the risky asset. It reflects instead the date-0 distribu-
tion of pre-tax income: Expression (27) shows that the random component

of taxes is of the form −F0

(
−X̃

)
, with X̃ uniformly distributed over (w,w) .

Thus the Gaussian nature of asset risk is not reflected in (27). This connec-
tion between inequality among top incomes and the risk profile of their taxes
is a novel prediction to our knowledge. More generally, the prediction that
endogenous portfolio rebalancing creates a nonlinear relationship between
realized asset returns and collected taxes is novel to our knowledge.

Second, expression (26) shows how the demand for the risky asset dy-
namically evolves. It is easy to analyze in the case in which t is very close to
1. It is transparent from (26) that for t suffi ciently close to 1, the exposure
on the risky asset is concentrated on agents with an initial income w such
that:

w = w + (w − w) Φ (−Wt) .

Thus for t close to 1, the demand for the risky asset is driven by agents with
initial income close to w after bad realizations of the asset return (Wt small),
and by agents with initial income close to w after positive realizations of the
asset return. It seems reasonable to assume that income distribution F0

has a decreasing density over [w,w] because avoidance is is concentrated at
the right tail of income distribution, where density is decreasing. In this
case, total demand for the risky asset should chase the realized return. It
increases in particular after positive realized returns.

4.3 Tax capacity with commitment

We now consider the case in which the planner still seeks to maximize his
expected date-1 revenues, but can credibly commit to a tax scheme that he
announces at date 0. In this case,
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Proposition 20
The planner announces the tax scheme

r(w) = w,

τ(w) = w − u−1 ◦ u ◦ g(w).

Agents invest at the risk-free rate and the tax capacity is∫ +∞

0

(
w − u−1 ◦ u ◦ g(w)

)
dF0(w).

Proof. See the Appendix.�
Commitment power is particularly valuable in the case of systematic risk

taking. Not only does it raise the planner’s tax capacity, but it also severs
the link between tax avoidance and financial instability discussed above.
The planner commits in this case to a tax scheme that is less regressive
than the ex post optimal one. This eliminates risk-taking incentives and
thus yields to a stable distribution of taxable income, but comes at the cost
of a smaller tax capacity given this ex post distribution.

4.4 Discussion

General avoidance function

It is easy to see that the results are qualitatively similar for a general avoid-
ance function g. In this case each agent with initial income w uses dynamic
trading in order to replicate the binary option ρ̃(w) corresponding to his
optimal lottery.

Welfare-maximizing planner

Maximizing tax capacity no longer coincides with utilitarian welfare maxi-
mization when risk shifting involves exposure to systematic risk. Consider
the case of taxation without commitment. In this case, the constant term
v(0) of the welfare-maximizing tax scheme is also contingent onW1, and pos-
itively correlated with the variable term v(w)−v(0). Thus a hedging motive
arises for each agent and his optimal trading strategy is more complex. We
have been unable to characterize it simply.

The situation in which maximization of tax capacity and that of utili-
tarian welfare coincide is that in which the planner must announce a fixed
amount of expenditures at date 0, and then collects taxes at date 1. In
this case he breaks even on average but bears systematic risk because of
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revenue uncertainty. This may be a realistic description of public finances
in the short to medium run, where expenditures are much less sensitive to
the evolution of the economy than collected taxes.

5 Related literature

This paper studies how two frictions - avoidance and risk shifting - affect
the tax and redistribution capacities of a social planner. As such, it blends
ingredients that have been studied in distinct literatures, and from differ-
ent angles. This section discusses how this paper relates to the respective
existing literatures on tax avoidance, on risk shifting, and on the effect of
frictions on inequality.

First, there is a surprising contrast between the large evidence that tax-
payers do take advantage of available legal methods of reducing their fiscal
obligations, and the relatively sparse theoretical literature on this topic. The
literature on tax avoidance is by and large descriptive (see, e.g., Stiglitz,
1985). Slemrod and Kopczuk (2002) and Piketty, Staez, and Stancheva
(2013) capture avoidance in a reduced form, as an exogenous elasticity of
taxable income to the tax rate. Like us, Casamatta (2013) and Grochul-
ski (2007) adopt the alternative approach of modelling tax avoidance as a
primitive informational friction, and then deriving optimal fiscal policy as
an optimal mechanism. We share with these contributions the modelling of
avoidance as an ex post moral-hazard problem of costly diversion. Grochul-
ski (2007) establishes the result that increasing returns to avoidance imply
the optimality of avoidance-free schemes. Casamatta (2013) shows that this
no longer need be the case when the function g is concave.

Second, the risk-shifting friction is a form of ex ante moral hazard that
has been thoroughly studied in financial economics. In their seminal paper,
Jensen and Meckling (1976) show that overly leveraged firms may under-
take value-destroying projects provided these are suffi ciently risky. A large
asset-pricing literature studies how nonconcavities stemming from compen-
sation schemes or career concerns create risk-shifting incentives for fund
managers. Contributions include Basak, Pavlova, and Shapiro (2007), Car-
penter (2000), Ross (2004), and Makarov and Plantin (2013). We borrow our
formal modelling of risk shifting as a choice among arbitrary distributions
from the latter.

Our focus on how risk taking shapes the wealth distribution relates to
a number of paper that study economies in which agents care not only for
consumption but also for their status (see, e.g., Becker, Murphy, and Wern-
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ing, 2003, Ray and Robson, 2012, or Robson, 1992). In these contributions,
status may induce non concavities in utility over endowment, so that only
wealth distribution that are suffi ciently inequal discourage agents from gam-
bling. By contrast, agents care only about consumption in our economy, and
only scale economies in avoidance and lack of commitment generate endoge-
nous pre-tax inequality.

While risk shifting is largely absent from the public-finance literature
to our knowledge, it relates to various forms of secret side-trading stud-
ied by this literature. Contributions include Cole and Kocherlakota (2001),
Golosov and Tchivisty (2007), or Ales and Maziero (2013). In Cole and
Kocherlakota (2001), agents can secretly save at an exogenously given rate.
Golosov and Tsyvinski (2007) endogenize the price of the assets that agents
secretly trade. Ales and Maziero (2013) study non-exclusive contracting,
and thus fully endogenize the side contracts that agents can secretly sign.
Broadly, the goal of this literature is to study how agents’ability to secretly
trade affects effi cient production and risk sharing in economies with asym-
metric information. Our purpose is quite different. We study an economy
that is trivially Pareto effi cient at the outset. There are no gains from social
interaction between agents: They receive risk-free endowments of a single
private good and do not produce. Tax avoidance and side trades matter only
because of the presence of a social planner who uses taxation to implement
inequality-averse social views. Our focus is on how tax avoidance and risk
shifting stand in the way of this social planner, and may lead him to create
two types of ineffi ciency. First, he may induce tax avoidance, which wastes
resources. Second, he may also spur risk shifting, thereby adding non re-
warded risk to a risk-averse economy. We show that the commitment power
of the planner determines whether he creates such costs for the economy or
not. A planner who can commit designs schemes that do not induce tax
avoidance nor risk shifting in equilibrium. This crucially relies on increasing
returns to avoidance, as shown by Casamatta (2013). Absent commitment,
we show that there is tax avoidance in equilibrium in the dynamic version
of the model, and that risk shifting also occurs in equilibrium.

Acemoglu, Golosov, and Tsyvinski (2010), and Farhi, Sleet, Werning,
and Yeltekin (2012) also study environments in which an inequality-averse
planner cannot commit. Perhaps closest to our paper, Bisin and Rampini
(2006) introduce anonymous trading in such an environment, and show that
it might be preferable to publicly observed trading because the limited in-
formation of the governement mitigates time-inconsistency problems. Our
result that there is secret consumption in equilibrium in the dynamic case
without commitment is related to theirs.
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Finally, the prediction that regressive taxation at the top endogenously
increases pre-tax inequality because of a risk-shifting friction is novel to
our knowledge, although Posner informally made this claim.11 The growth
and development literatures have shown that credit constraints may create
poverty traps that amplify income inequality (see, e.g., Aghion and Bolton,
1997, Banerjee and Newman, 1993, Galor and Zeira, 1993, or Greenwood
and Jovanovic, 1990). We suggest that another friction - risk shifting - may
amplify inequality at the top of the income distribution. No systematic
empirical test of this prediction has been carried out to our knowledge.
Yet, Gentry and Hubbard (2000) and Cullen and Gordon (2007) document
the related fact that entrepreneurial risk taking is reduced when taxation
becomes more progressive.
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6 Appendix

6.1 Proof of Lemma 2

Proof of i). For all t ∈ [0, 1] and w ≥ 0,

g(tw) = g(tw + (1− t)0) ≤ tg(w) + (1− t)g(0) = tg(w).
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Thus for all w, w′ ≥ 0 s.t. w + w′ > 0,

g(w) + g(w′) = g

(
w

w + w′
(
w + w′

))
+ g

(
w′

w + w′
(
w + w′

))
≤ w

w + w′
g
(
w + w′

)
+

w′

w + w′
g
(
w + w′

)
= g

(
w + w′

)
.

Proof of ii). We need to show that

∀ 0 ≤ w′ ≤ w, g
(
w − w′

)
+ g

(
w′
)
≤ g (w) , (28)

for
g(x) = max {f(x)− k; 0} .

Inequality (28) clearly holds if

min
{
f(w − w′); f(w′)

}
≤ k.

Otherwise the inequality becomes

f (w) ≥ f
(
w′
)

+ f(w − w′)− k.

Concavity of f implies

f
(
w′
)

+ f(w − w′) ≤ 2f
(w

2

)
,

and thus

f (w)−
(
f
(
w′
)

+ f(w − w′)
)
≥ f (w)− 2f

(w
2

)
≥ −k

from (3).�

6.2 Proof of Proposition 3

Step 1. We first show that we can without loss of generality restrict the
analysis to mechanisms such that

∀ w ≥ 0, r(w) = w.

Consider an arbitrary scheme (r, v) that satisfies constraints (5). Define the
scheme (ρ, ν) as

ρ(w) = w,

ν(w) = v(r(w)) + g(w − r(w)).
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First, the scheme (ρ, ν) is incentive-compatible: For all w ≥ 0 and w′

s.t. w′ < w, we have

ν(w) = v(r(w)) + g(w − r(w)) ≥ v(r(w′)) + g(w − r(w′)),
≥ v(r(w′)) + g(w′ − r(w′)) + g(w − w′),
= ν(w′) + g(w − w′).

The first inequality stems from the fact that (r, v) is incentive-compatible.
The second one follows from the fact that g is superadditive.

Second, the scheme (ρ, ν) is feasible:∫ +∞

0
ν(w)dF (w) =

∫ +∞

0
v(r(w))dF (w) +

∫ +∞

0
g(w − r(w))dF (w)

≤
∫ +∞

0
r(w)dF (w) +

∫ +∞

0
(w − r(w)) dF (w)

≤
∫ +∞

0
wdF (w) =

∫ +∞

0
ρ (w) dF (w).

Finally, the scheme (ρ, ν) delivers the same utility as the scheme (r, v)
for each income level. Thus, the restriction to avoidance-free schemes is
without loss of generality.�

Step 2. Consider the following auxiliary program

max
v

∫ +∞

0
u (v(w)) dF (w)

s.t.

{ ∫ +∞
0 v(w)dF (w) ≤

∫ +∞
0 wdF (w),

∀w ≥ 0, v(w) ≥ g (w) + v(0).
(29)

This amounts to considering only the deviation of a zero-report w′ = 0 in
the incentive-compatibility constraints of (℘). We will show that

V (w) = g (w) +

∫ +∞

0
(t− g(t)) dF (t)

solves this program. It is easy to see that V satisfies constraints (29).
Consider a function v that solves this program. Clearly, v must be

(weakly) increasing. Thus, v admits a left limit v(x−) and a right limit
v(x+) at each point x ∈ (0,+∞). Suppose that for some x0 ∈ (0,+∞) ,
v(x−0 ) < v(x+

0 ). Then one could slightly increase v in the left neighborhood
of x, slightly decrease it in the right neighborhood, and thus strictly increase
utilitarian welfare while still satisfying constraints (29). Thus v must be
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continuous over (0,+∞) almost surely (and with a similar argument also
has a right-limit in 0).

Suppose now that for some x1 ∈ (0,+∞),

v(x1) > g (x1) + v(0). (30)

Since v and g are continuous, inequality (30) actually holds over some neigh-
borhood Ω of x1. Consider a bounded measurable function h with support
within Ω s.t.

∫
hdF = 0. The function

w → v(w) + th(w)

satisfies constraints (29) for t suffi ciently small. Thus it must be that

Φ(t) =

∫ +∞

0
u (v(w) + th(w)) dF (w)

has a local maximum in 0, or that

Φ′(0) =

∫ +∞

0
u′ (v(w))h(w)dF (w) = 0. (31)

Since (31) holds for any function h, and u is strictly concave, it must be
that v is constant over Ω. Clearly this implies that v must be constant over
[0, x1), which cannot be unless g is equal to 0 over this interval. In any case,
this contradicts (30). Thus v = V .

Since constraints (29) are necessary conditions for constraints (5) and V
happens to satisfy (5) by superadditivity, this concludes the proof.�

6.3 Proof of Corollary 4

The proof of Proposition 3 only uses that u is increasing and strictly concave,
and so is Ω ◦ u.�

6.4 Proof of Corollary 5

Apply Corollary 4 with

Ω(x) = −e
−ax

a
,

and let a→ +∞.�
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6.5 Proof of Corollary 6

Clearly the tax scheme (r∗, τ∗) satisfies the constraints of (℘′) by superad-
ditivity of g. Any scheme (r, τ) that also satisfies these constraints must in
particular satisfy:

∀w ≥ 0, τ (r(w)) ≤ r(w) + g (w − r(w))− g (w) .

The right-hand side is maximal for r(w) = w from (1), in which case it is
equal to τ∗(w), which establishes the result.

Taxation cannot be strictly progressive because this would imply that g
is strictly concave and thus strictly subadditive.�

6.6 Proof of Proposition 7

Ex post randomization. Suppose that mechanisms can be random. The
planner offers a random net transfer ṽ(r(w)) to an agent who reports r(w).
First, it is easy to see that, as in the deterministic case, restricting the
analysis to r(w) = w is without loss of generality. As in the deterministic
case, it suffi ces to replace this mechanism with one in which

ρ(w) = w,

ν̃(w) = ṽ(r(w)) + g(w − r(w)).

This new mechanism is feasible and incentive-compatible by superadditivity
of g, actually regardless of the properties of the utility function u.

Second, for any random mechanism ṽ(w) that is feasible and incentive
compatible, define the deterministic mechanism

γ(w) = u−1 (E [u (ṽ(w))]) .

First, this mechanism is incentive-compatible. For all w ≥ 0 and w′ < w,
incentive-compatibility of ṽ implies

E [u (ṽ(w))] ≥ E
[
u
(
ṽ(w′) + g(w − w′)

)]
,

or

u−1 (E [u (ṽ(w))]) ≥ u−1
(
E
[
u
(
ṽ(w′) + g(w − w′)

)])
≥ u−1

(
E
[
u
(
ṽ(w′)

)])
+ g(w − w′).

The second inequality stems from the fact that the function

y → u−1
(
E
[
u
(
ṽ(w′) + y

)])
− y
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is increasing.
Second, this mechanism is feasible because∫ +∞

0
u−1 (Eu (ṽ(w))) dF (w) ≤

∫ +∞

0
E [ṽ(w)] dF (w)

from Jensen’s inequality.
Third, this mechanism obviously delivers the same utility as the random

one ṽ(w) for each income level. Thus restricting the analysis to deterministic
mechanisms is without loss of generality in this case.

Ex ante randomization. It consists in initially splitting the popula-
tion in subgroups indexed by i ∈ I that differ only with respect to their
initial masses, where I may be a finite, infinite, or even uncountable set.
The subgroups share the same conditional income distribution since agents
are split ex ante. It is easy to see that such randomization cannot help. For
each group i, the optimal tax scheme must be of the form

ri(w) = w,

vi(w) = vi(0) + g(w).

The only degree of freedom induced by ex ante randomization is that the
constant terms vi(0) may differ across groups as groups may cross-subisdize
each other. Jensen’s inequality implies, however, that it is optimal to have

∀i, i′ ∈ I, vi(0) = v′i(0),

so that ruling out ex ante randomization is without loss of generality.

6.7 Proof of Lemma 9

For w0 > 0, define

WD(w0) = min
(z1,z2)∈R2

z1 + w0z2,

s.t. ∀w ≥ 0, z1 + wz2 ≥ u(g(w)). (32)

The program defining WD(w0) is the dual of that defining W (w0). It has a
simple graphical interpretation. It consists in finding, among all the straight
lines above the graph of u ◦ g, the one that takes the smallest value in w0.
Makarov and Plantin (2013) show that

WD(w0) = W (w0).
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It is graphically intuitive that WD is the concavification of u ◦ g. We now
prove it formally.

Fix w0 > 0. The function (z1, z2) → z1 + w0z2 is continuous. Thus,
there exists at least one (z1(w0), z2(w0)) satisfying (32) such thatWD(w0) =
z1(w0) + z2(w0)w0. Clearly, z2(w0) ≥ 0 since u ◦ g is strictly increasing. For
such a pair (z1(w0), z2(w0)), let

S(w0) = {w ≥ 0 : z1(w0) + z2(w0)w = u ◦ g(w)} .

Continuity of u ◦ g implies that S(w0) is nonempty and closed. It is clearly
bounded and therefore compact. Let

σ (w0) = minS(w0), σ (w0) = maxS(w0).

We have:
σ (w0) ≤ w0 ≤ σ (w0) . (33)

Proof. We prove that w0 ≤ σ (w0). The proof that σ (w0) ≤ w0 is symmetric.
Suppose the opposite that w0 > σ (w0) then for some ε ∈ (0, w0 − σ (w0)) ,
let

η (ε) = min
y≥σ(w0)+ε

{
z1(w0)− u ◦ g(y)

y
+ z2(w0)

}
.

Clearly, η (ε) > 0.
Define (z′1, z

′
2) as z′1 = z1(w0) + (σ (w0) + ε) η (ε) , z′2 = z2(w0) − η (ε) .

The pair (z′1, z
′
2) satisfies (32). To see this, notice that z′1 + yz′2 = z1(w0) +

yz2(w0)+η (ε) (σ (w0) + ε− y) . Thus z′1 +yz′2 > z1(w0)+yz2(w0) ≥ u◦g(y)
for y < σ (w0) + ε. Further, z′1 + yz′2 ≥ z1 (w0) + yz2 (w0)− η (ε) y ≥ u ◦ g(y)
for y ≥ σ (w0) + ε by definition of η (ε) . At the same time,

z′1+w0z
′
2 = z1 (w0)+w0z2 (w0)+(σ (w0) + ε− w0) η (ε) < z1 (w0)+w0z2 (w0) ,

which contradicts the definition of (z1 (w0) , z2 (w0)).�
Inequalities (33) imply that for each w0, we can define{

w (w0) = sup
{
w ≤ w0 s.t.W

D (w) = u (g (w))
}

w (w0) = inf
{
w ≥ w0 s.t.W

D (w) = u (g (w))
}

because these sets are not empty: They respectively contain σ (w0) and
σ (w0) . It must be indeed that{

z1(w0) + z2(w0)σ (w0) = u ◦ g(σ (w0)) = WD(σ (w0))
z1(w0) + z2(w0)σ (w0) = u ◦ g(σ (w0)) = WD(σ (w0))

.
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Thus, for any w0 > 0, if WD (w0) 6= u (g (w0)) , then [w (w0) , w (w0)] is not
a singleton, and WD is linear over it. We are now able to prove:

WD(w) = u ◦ g (w) . (34)

Proof. Notice first that by construction, WD ≥ u ◦ g. Second, suppose that
there exists a concave function θ such that

θ ≥ u ◦ g,
∃w0 s.t. θ(w0) < WD(w0).

In this case, it must be that u◦g(w0) < WD(w0). But then, this means that θ
is above the line y = z1(w0)+xz2(w0) in w (w0) and w (w0), and strictly be-
low it in w0: it cannot be concave. Third,WD is concave. Suppose otherwise
that there exists w1 < w2 < w3 such that the chord between

(
w1,W

D(w1)
)

and
(
w3,W

D(w3)
)
is strictly above

(
w2,W

D(w2)
)
in w2. This contradicts

that there exists a straight line that meets the graph of WD in w2 and that
is above the graph of WD, since such a straight line cannot be above both(
w1,W

D(w1)
)
and

(
w3,W

D(w3)
)
.�

Equality (34) also defines the risk-taking choices of an individual with
initial income w0. If

u(g(w0) = WD(w0) = W (w0),

then the agent reaches W (w0) by investing at the risk free rate. If

u(g(w0) < WD(w0),

then we have

z1 (w0) + w (w0) z2 (w0) = u (g(w (w0))) ,

z1 (w0) + w (w0) z2 (w0) = u (g(w (w0))) .

so that

WD(w0) = z1 (w0) + z2 (w0)w0 =
w0 − w (w0)

w (w0)− w (w0)
u (g(w (w0)))

+
w (w0)− w0

w (w0)− w (w0)
u (g(w (w0))) .

Thus the lottery that pays off w (w0) with probability w(w0)−w0
w(w0)−w(w0) and

w (w0) with probability w0−w(w0)
w(w0)−w(w0) attains W

D(w0) = W (w0). Other lot-
teries with support in S(w0) can also attain it. But in this case their support
is on the left of w (w0) and on the right of w (w0). Thus they are dominated
by this minimal one in the sense of second-order stochastic dominance be-
cause their c.d.f. must single cross that of this minimal lottery.�
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6.8 Proof of Corollary 11

Proof of i). If u ◦ g = u ◦ g, there is no risk shifting in equilibrium and
utilitarian welfare is the same as absent risk shifting. If u ◦ g < u ◦ g, then
a non negligible set of agents shift risk. It is actually as if agents could not
shift risk, but the planner offered the random mechanism

g(ρ̃(w)) + v∗∗ (0) ,

which is incentive compatible and feasible absent risk shifting since it is
when agents can shift risk. This mechanism is different from (6) for a non
negligible set of agents and thus yields a strictly lower utilitarian welfare.

Proof of ii). Straightforward computations show that

E [u (v∗∗ (0)) + g(ρ̃(w))] > u (v∗ (0) + g(w))

if and only if

E

[
u

(
g (ρ̃(w))− g(w)−

∫ +∞

0
(E [g (ρ̃(t))]− g(t)) dF0(t)

)]
> u(0).

Notice that ρ̃(.) does not depend on F0.
If an arbitrarily large mass of F0 is concentrated on agents that do

not shift risk, then the inequality is satisfied for an agent with income w
who shifts risk, because

∫ +∞
0 (E [g (ρ̃(t))]− g(t)) dF0(t) becomes arbitrarily

small.
Let t0 ∈ arg maxt≥0 {(E [g (ρ̃(t))]− g(t))}. If the mass of F0 is arbitrarily

concentrated on t0, then all agents are worse off because

max
w≥0

{
E [g (ρ̃(w))]− g(w)−

∫ +∞

0
(E [g (ρ̃(t))]− g(t)) dF0(t)

}
,

which is positive, is arbitrarily close to 0. Thus lotteries g (ρ̃(w)) − g(w) −∫ +∞
0 (E [g (ρ̃(t))]− g(t)) dF0(t) are at best arbitrarily close to fair in the
limit and a risk-averse agent is unwilling to take any of them in the limit.�

6.9 Proof of Proposition 12

We skip the proof that due to the superadditivity of g, one can restrict
the analysis to avoidance-free mechanisms where agents report their entire
income at date 1: it is identical to that in the baseline model. A direct
mechanism is now a pair (v(w), Hw) for each income level w, where v is the
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net transfer following a report w and Hw ∈ Γ, the set of c.d.f. over [0,+∞).
The planner now faces the program (℘̃) :

max
(v(w),Hw)

∫ +∞

0

(∫ +∞

0
u(v(t))dHw (t)

)
dF0 (w)

s.t.


∫ +∞

0

(∫ +∞
0 v(t)dHw (t)

)
dF0 (w) ≤

∫ +∞
0 wdF0 (w) ,

∀0 ≤ w′ ≤ w, v(w) ≥ v(w′) + g (w − w′) ,

∀w ≥ 0, Hw = arg maxG∈Γ

{ ∫ +∞
0 u(v(t))dG (t)

s.t.
∫ +∞

0 tdG (t) = w

}
.

Compared with the problem absent risk shifting (℘), the program (℘̃) has
an additional incentive-compatibility constraint - the last one - stating that
agents pick an optimal lottery given the net transfer v.

Step 1. We first show that the scheme v∗∗∗(w) satisfies the constraints
of (℘̃). By construction, it satisfies the resource constraint, and does not
induce risk taking. Also, for every 0 ≤ w′ ≤ w,

u−1 ◦ u ◦ g
(
w′
)

+ g
(
w − w′

)
= u−1

(
E
[
u
(
g
(
ρ̃
(
w′
))

+ g
(
w − w′

))])
≤ u−1

(
E
[
u
(
g
(
ρ̃
(
w′
)

+ w − w′
))])

≤ u−1 ◦ u ◦ g (w) .

The equality stems from CARA, the first inequality stems from the superad-
ditivity of g, and the second inequality stems from the fact that the lottery
ρ̃ (w′) + w − w′ is not strictly preferable to the optimal lottery ρ̃ (w) .

Step 2. Suppose that (v(w), Hw) is a mechanism that satisfies the
constraints of (℘̃). Then for all w ≥ 0,

u−1

(∫ +∞

0
u(v(t))dHw (t)

)
− v(0) ≥ u−1 ◦ u ◦ g (w) .

Proof. Incentive-compatibility of v requires in particular that

∀w ≥ 0, v(w) ≥ v(0) + g(w),

and therefore∫ +∞

0
u(v(t))dHw (t) ≥ u ◦ v (w) ≥ u (v(0) + g(w)) .

Since w →
∫ +∞

0 u(v(t))dHw (t) is concave by construction, it is also larger
than the concavification of w −→ u (v(0) + g(w)) . Since u is CARA, this
implies

u−1

(∫ +∞

0
u(v(t))dHw (t)

)
− v(0) ≥ u−1 ◦ u ◦ g (w) .

47



�
Step 3. Let h a continuously increasing function such that h(0) = 0,

and

J(h) = max
v

∫ +∞

0
u (v(w)) dF0(w) (35)

s.t.

{ ∫ +∞
0 v(w)dF0(w) ≤

∫ +∞
0 wdF0(w),

∀w ≥ 0, v(w) ≥ h (w) + v(0).

We have

J(h) =

∫ +∞

0
u

(
h(w) +

∫ +∞

0
(t− h(t)) dF0(t)

)
dF0(w), (36)

Proof . Step 2 in the proof of Proposition 3.�
Proof that v∗∗∗(w) solves (℘̃). For any mechanism (v(w), Hw) that

satisfies the constraints of (℘̃), define the mechanism (ψ (w) ,Φw) as{
ψ (w) = u−1

(∫ +∞
0 u(v(t))dHw (t)

)
,

Φw(t) = 1{t≥w}.

This mechanism satisfies the resource constraint in (35) from Jensen’s in-
equality. From Step 2, it satisfies the other constraint of (35) for h =
u−1 ◦ u ◦ g. Step 3 shows that it yields a lower utilitarian welfare than v∗∗∗,
and thus so does (v(w), Hw) .�

Finally, if u ◦ g 6= u ◦ g, utilitarian welfare is strictly smaller than absent
risk shifting because v∗∗∗ is different from v∗ on a non negligible set, and
strictly larger than absent commitment because v∗∗∗ is different from v∗∗ on
a non negligible set.�

6.10 Proof of Lemma 13

For brevity, we skip the proof that restricting the analysis to schemes such
that the date-0 report is r(w) = w is again without loss of generality. Such
schemes are incentive-compatible if the date-1 payment v(w) satisfies

u(v(w)) ≥ max
0 ≤ w′ ≤ w
Es̃ = w − w′

E
[
u
(
v
(
w′
)

+ g(s̃)
)]
.

In words, the right-hand side considers all possible reports w′ ∈ [0, w] and
all possible gambles on concealed income w − w′. It is easy to see that this
implies in particular that v satisfies

v(w)− v(0) ≥ u−1 ◦ u ◦ g (w) .
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That this implies that v = v∗∗∗ follows then from Step 3 in the proof of
Proposition 12.

6.11 Proof of Lemma 14

The program
max
w1

u ◦ g (w − w1) + u ◦ g (w1) (37)

is concave and is trivially solved by w1 = w
2 , that generates the value

2u ◦ g
(
w
2

)
. Its objective function is larger than that of (21) for all w1. Thus

if there exists a w1 such that the value function of (21) reaches 2u ◦ g
(
w
2

)
,

then it must be a solution to (21). The w1 described in the Lemma clearly
achieves this by linearity of u ◦ g over

(
w
(
w
2

)
, w
(
w
2

))
.�

6.12 Proof of Proposition 15

The proof follows the same broad steps as that of the proof of Proposition
3.

Step 1. Restricting the analysis to mechanisms such that r(w) = w is
without loss of generality.

Proof. For any mechanism (r, v0, v1, σ̃, σ) that satisfies the constraints
(23) of

(
℘D
)
, define the mechanism

ρ (w) = w,

ν0(w) = v0(r(w)) + g (w − r(w)− σ(w)) ,

ν1(w) = u−1 (E [u (v1(r(w)) + g (σ̃(w)))]) .

This mechanism is clearly feasible, and delivers the same utility to each
agent as that delivered by (r, v0, v1). Let us show that it is incentive-
compatible. We have

u
(
ν0(w′) + g

(
w − w′ − s

))
+ E

[
u
(
ν1(w′) + g (s̃))

)]
= u

(
v0(r (w′)) + g (w′ − r(w′)− σ(w′))

+g (w − w′ − s)

)
+E

[
u
(
u−1

(
E
[
u
(
v1(r(w′)) + g

(
σ̃(w′)

))])
+ g (s̃)

)]
.

Superadditivity and CARA imply

u

(
v0(r (w′)) + g (w′ − r(w′)− σ(w′))

+g (w − w′ − s)

)
≤ u

(
v0(r

(
w′
)
) + g

(
w − r(w′)− σ(w′)− s

))
,

E
[
u
(
u−1

(
E
[
u
(
v1(r(w′)) + g

(
σ̃(w′)

))])
+ g (s̃)

)]
≤ E

[
u
(
v1(r(w′)) + g

(
σ̃(w′) + s̃

))]
.
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Incentive-compatibility of (r, v0, v1, σ̃, σ) implies in turn[
u (v0(r (w′)) + g (w − r(w′)− σ(w′)− s))

+E [u (v1(r(w′)) + g (σ̃(w′) + s̃))]

]
≤ u (v0(r(w)) + g (w − r(w)− σ(w)))

+E [u (v1(r(w)) + g (σ̃(w)))]

= u (ν0(w)) + u (ν1(w)) .

�
Step 2. Consider the less constrained program

(
℘D0
)
solving for an

optimal mechanism (v0, v1) that is feasible, and such that each agent prefers
to report his entire income rather than none of it:

max
(v0,v1)

∫ +∞

0
(u (v0(w)) + u (v1(w))) dF (w) (38)

s.t.



∫ +∞
0 (v0(w) + v1(w)) dF (w) ≤

∫ +∞
0 wdF (w),

∀w ≥ 0, u (v0(w)) + u (v1(w)) ≥ maxs,s̃

{
u(v0(0) + g(w − s))
+E [u (v1(0) + g(s̃))]

}
s.t. 0 ≤ s ≤ w,
E [s̃] = s.

.
(39)

We show in two steps that the solution to this program is (vD, vD).
First, applying the same variational argument as in step 2 in the proof

of Proposition 3, one gets that an optimal (v0, v1) must satisfy

∀w ≥ 0, u (v0(w)) + u (v1(w)) = max
s,s̃

{
u(v0(0) + g(w − s))
+E [u (v1(0) + g(s̃))]

}
s.t. 0 ≤ s ≤ w,
E [s̃] = s.

. (40)

This means that a solution to
(
℘D0
)
is fully characterized by its constant

terms (v0(0), v1(0)) .
Second, for any pair of positive numbers (v0(0), v1(0)), we have

max
s,s̃

{
u(v0(0) + g(w − s))
+E [u (v1(0) + g(s̃))]

}
s.t. 0 ≤ s ≤ w,
E [s̃] = s.

≤ 2e
−α
(
v0(0)+v1(0)

2

)
u ◦ g(

w

2
). (41)

Proof of (41). We have

max
s,s̃

{
u(v0(0) + g(w − s))
+E [u (v1(0) + g(s̃))]

}
s.t. 0 ≤ s ≤ w,
E [s̃] = s.

≤ max
s∈R, x∈[0,1]

Λ (x, s) , (42)
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where

Λ (x, s) =
e−α(xv0(0)+(1−x)v1(0))u ◦ g(w − s)

+e−α(xv1(0)+(1−x)v0(0))u ◦ g(s)
.

(42) holds because the program on the right-hand side is less constrained
and has a larger objective than that on the left-hand side. The envelope
theorem implies

arg max
x

{
max
s

Λ (x, s)
}

=
1

2
.

�
This implies that for any feasible scheme defined by the pair (v0(0), v1(0)),

the scheme vD(w) = v0(0)+v1(0)
2 + u−1 ◦ u ◦ g(w2 ) is preferable. It is also fea-

sible because it implies less savings distortion and risk shifting than the one
defined by the pair (v0(0), v1(0)), and thus a higher tax capacity.

Step 3. It only remains to show that (rD, vD, vD) satisfies the general
incentive-compatibility constraints of (℘D). We leave it to the reader to
check that it stems, again, from u being CARA and g superadditive.�

6.13 Proof of Proposition 16

In this proof we consider a given mechanism that is feasible and incentive-
compatible, and show by contradiction that it cannot comprise unbounded
date-0 income reports.

Step 1. Notice first that if the support of the planner’s beliefs about an
agent’s date-1 pre-tax income has a lower bound w1, then ex post optimality
implies that he promises the agent a utility of −∞ if his date-1 report r1(w1)
is less than w1, and a date-1 variable payment g(r1(w1)−w1) otherwise. The
date-1 scheme is thus such that r1(w1) = w1.

Step 2. Denote k0 and k1 the respective date-0 and date-1 transfers
to an agent who does not report any income at any date. An agent with
income w who reports no income at date 0 can reach at least utility:

u
(
k0 + g

(w
2

))
+ u

(
k1 + g

(w
2

))
.

Thus as w → +∞, the utility of an agent with income w tends to 2 lim+∞ u.
Step 3. lim

w→+∞
w (w)− w (w) = 0.

Proof. If w (w) > w (w), then the function u ◦ g has a lower right
derivative in w (w) than left derivative in w (w) by construction of its con-
cavification. But marginal utility decreases exponentially, while the left and
right derivatives of g are bounded by assumption. Thus it can be that the
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function u ◦ g has a lower right derivative in w (w) than left derivative in
w (w) only when w (w) and w (w) are arbitrarily close as w becomes large.�

Proof of the Proposition. Suppose now that the mechanism features
a date-0 report function r0 (w) such that the set {r0(w)}w≥0 is not bounded.
There exists a sequence (ρn)n≥0 within this set such that

ρn →
n→+∞

+∞.

For n ≥ 0, define

Ωn = {w s.t. r0(wn) = ρn} ,
ωn = inf Ωn.

For every n ≥ 1, there exists a wn ∈ Ωn s.t.

wn ≤ ωn +
1

n
.

We now show that the date-1 consumption of an agent with such an
income wn cannot grow without bound as n→ +∞. For this to be the case,
it would also have to be the case that the equilibrium savings of this agent
σ(wn) grow without bound with n. From step 3, w (σ(wn)) −→

n→+∞
σ(wn).

But then, it must be that the lower bound of the support of the planner’s
beliefs about this agent’s date-1 pre-tax income realization converges to
w (σ(wn)) and thus σ(wn) as n → +∞. This is because all the agents who
make the same report as him have an income larger than wn − 1

n . Thus it
must be that their savings are at least σ(wn) − 1

n , invested in arbitrarily
small lotteries from step 3.

From step 1, this implies that the date-1 consumption of the agent with
income wn is bounded as n→ +∞. From step 2, the agent with income wn
could reach a strictly higher utility by not reporting any income at date 0
for n suffi ciently large, a contradiction.�

6.14 Proof of Lemma 17

Remark. Infinitely risk-averse agents never find it optimal to gamble, and
we can thus ignore the risk-shifting friction.

Step 1. If the optimal scheme is such that

∀w ≥ 0, r0(w) = 0,
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then it must be such that the net transfers at dates 0 and 1, v0 and v1, are

v0(w) = K,

v1(w1) = K + g(w1),

where w1 is date-1 income and K = 1
2

∫ (
w
2 − g(w2 )

)
dF (w).

Proof. Ex post optimality implies that the variable part of the scheme
at date 1 is g(w1). We only have to prove that it is optimal to give equal
minimum consumption level across dates. It could be preferable to grant a
larger minimum consumption level at date 0, so that savings are higher and
thus more taxes are collected at date 1. We show that this is not the case.
Denoting k0 and k1 the respective date-0 and date-1 minimum consumption
levels, suppose that k0 ≥ k1. An increase dk in k0 financed by a decrease dk
in k1 raises date-1 savings s by ds for all agents with income w such that
k0 ≤ k1 + g(w), with

dk − g′L (w − s) ds = −dk + g′R (s) ds,

or

ds =
2dk

g′L (w − s) + g′R (s)
.

Thus at each income level the additional collected taxes are

d [s− g (s)] =
2dk

g′L (w − s) + g′R (s)

(
1− g′R (s)

)
,

so that the net change in date-1 minimum consumption - the one that mat-
ters to the social planner - is larger than

dk

∫ (
2 (1− g′R (s))

g′L (w − s) + g′R (s)

)
dF (w)−dk = dk

∫ (
2− 3g′R (s)− g′L (w − s)
g′L (w − s) + g′R (s)

)
dF (w).

The integrand is negative for all w because

1

2
≤ g′L, g′R.

�
Step 2. Consider a mechanism that features date-0 reports r0(w) s.t.

sup {r0(w)}w≥0 = r > 0,

There exists a sequence (ρn)n≥1 within the set {r0(w)}w≥0 such that

ρn →
n→+∞

r.
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For n ≥ 1, define

Ωn = {w s.t. r0(w) ≥ ρn} ,
ωn = inf Ωn.

For every n ≥ 1, there exists a wn ∈ Ωn s.t.

wn ≤ ωn +
1

n
.

It must be that the lower bound of the support of the planner’s beliefs about
the date-1 pre-tax income of agent with income wn converges to its actual
value as n→ +∞. The planner knows that given a report r0(wn), an agent’s
income is at least ωn, from which he infers a lower bound on the savings of
the agent that is arbitrarily close to the actual savings of agent with actual
income wn. Thus as n → +∞, the date-1 consumption of an agent with
income wn is bounded above as n → +∞. Thus it must be that (wn)n≥1

is bounded above otherwise an agent with an income wn would prefer to
report zero income so as to be able to smooth consumption across dates.
We can therefore extract a subsequence (Wn) of (wn) that has a finite limit
W. Notice that it must be that W ≥ r by construction of the sequence wn.

Denote k0 and k1 the fixed payments of the scheme. If the agent with
income Wn deviates by reporting no income at date 0 and optimally saving
σn, then (σn)n≥1 has a limit σ because (Wn)n≥1 converges. If σ > 0, it
means that the date-0 consumption of such a deviating agent is weakly
larger than that at date 1 for n suffi ciently large, otherwise positive savings
would not be optimal. With infinite risk-aversion, the agent has minimum
consumption k1 + g(σ) if he deviates, while it is at most k1 from above if he
reports r(Wn). Thus such positive reports require that agent with income
Wn does not save in equilibrium for n suffi ciently large, or that

k1 ≥ k0 + g(W ) ≥ k0 + g(r). (43)

Proof of the Proposition. Compare now a scheme with no initial
reports as described in step 1 with a scheme in which agents report up to
r > 0 at date 0 as in step 2. In the scheme without reports, the minimum
consumption level K is the same across dates from Step 1. In the scheme
with initial reports, the total constant payments k1 + k0 are larger than 2K
by at most r−g(r). This is because agents report at most r , and do so only
if they consume at least k0 + g(r) at date 0. Thus, it must be that

k1 + k0 ≤ 2K + r − g(r).
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Combined with (43), this implies that

k0 ≤ K +
r

2
− g(r).

Since r
2 ≤ g(r), this scheme cannot be preferable to that in which r0 = 0

with infinitely risk-averse agents.�

6.15 Proof of Lemma 18

This is the textbook Black-Scholes model in the particular case in which
the risk-free rate and drift are both equal to zero. It is well-known that a
self-financed strategy can replicate the cash-or-nothing call. Its initial value
is equal to the expected payoff under the risk-neutral measure, which is in
this case identical to the subjective measure. It is therefore equal to

E0

[
1{P1≥K}

]
= E0

[
1{

e−
σ2
2 +σW1≥K

}
]

= Φ

(
− lnK

σ
− σ

2

)
.

From Ito’s Lemma, the "delta" of the cash-or-nothing call - the number
of units of the risky assets that one must hold at date t in order to implement

the replicating strategy - is equal to
∂Et[1{P1≥K}]

∂Pt
, where

Et
[
1{P1≥K}

]
= Pr

{
Pte
−σ

2(1−t)
2

+σ(W1−Wt) ≥ K
}

= Φ

(
−

ln K
Pt

σ
√

1− t
− σ

2

√
1− t

)
.

Straightforward derivation of this expression w.r.t. Pt yields q(K,Pt,t)�

6.16 Proof of Proposition 19

The agent invests in the risk-free rate and in a cash-or-nothing call that pays
off with probability w−w

w−w . From Lemma 18, the strike K must solve

Φ

(
− lnK

σ
− σ

2

)
=
w − w
w − w,

which yields (25). The aggregate demand for the risky asset at date t is

(w − w)

∫ w

w
q(K(w), Pt,t)dF0(w).

Plugging in the expression (24) and simplifying yields (26).
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Finally, for a given realization W1, the fraction of successful gambles is
by definition of the strikes K(w) :

F0 (w)− F0 (w − (w − w) Φ (W1)) ,

which readily yields (27).�

6.17 Proof of Proposition 20

The tax scheme τ(w) = w − u−1 ◦ u ◦ g(w) is clearly the only one that
leaves each agent with his reservation utility u ◦ g(w) without generating
risk shifting by definition of u ◦ g as the smallest concave function above
u ◦ g. It is also easy to see that any tax scheme that induces risk shifting
cannot generate higher expected taxes than this one by Jensen’s inequality
since u−1 ◦ u ◦ g is convex.�
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ݓ cݓ

Figure 1. The solid curve represents the graph of u◦g
and the dashed line its concavification over ݓ,ݓ .
The two functions coincide outside this segment.



w w2 w3w1

Figure 2. Here the straight line that concavifies u◦g in w has
three points of contact with u◦g , ଷݓ;ଶݓ;ଵݓ 	. An agent
with income w can concavify with a lottery that has support
ଷݓ;ଶݓ;ଵݓ , ଷݓ;ଵݓ 	, or ଶݓ;ଵݓ . The latter is less risky in

the sense of second-order stochastic dominance.


